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This column is an open forum. We welcome opinions
on all mathematical issues: research, education, and
communication. Please feel free to write.
Opinions expressed in this magazine do not necessarily reflect
those of the Editorial Board, PIMS, or its sponsors.

Don’t be too quick to

apply quantitative models

to human population history∗

by

Thomas Hillen†

Recent issues of π in the Sky featured a couple of interesting
articles that apply mathematical modelling to human history
[3, 7, 9] to illustrate apparent contradictions in the established
sequencing of historic events. This was taken as far as the
implication of Kasparov [7] and Fomenko [1, 2] that for the
last 3000 years of human history, about 1000 years have been
artificially added.

∗ The “Be Careful with that Axe” illustration was created by Martin
Hongsermeier. We publish it here with the artist’s permission.

† Thomas Hillen is a professor in the Department of Mathematical
Sciences at the University of Alberta.
His web site is http://www.math.ualberta.ca/∼thillen/ and his E-
mail address is thillen@math.ualberta.ca.

I took a look at Fomenko’s books to get a better under-
standing of what he is doing and how his argument is justi-
fied. As I started reading, I felt like I had dynamite in my
hands. Let me briefly describe what he does: Fomenko uses
statistical methods to compare historical texts like chroni-
cles and annals. He assumes that important and outstand-
ing events received more attention in chronicles than boring
events. Hence there must be more text available about impor-
tant years and less text about not so important years. With
this assumption, it is possible to “map” a historical period
according to the relative importance of the years, which gives
a kind of historical fingerprint (volume graph in Fomenko’s
book). His hypothesis is: if two independent chronicles show
comparable volume graphs, then they are most likely related,
or, depending on the strength of the correlation, they describe
the same events. Fomenko uses a huge amount of data to ver-
ify his hypothesis and to analyze historical data. He comes
to the fantastic conclusion that the known history of the last
3000 years consists of four copies of one “true” history with
a total length of about 1700 years. Which, in fact, suggests
that the Roman empires (first, second, third, and holy) are
really just four copies of the one Roman empire that really
existed. There are four copies of Julius Caesar in the his-
tory and even four copies of Jesus Christ, one of whom (he
suggests) was Gregory VII Hildebrand, who lived in the 11th
century AD. Fomenko’s books contain more of these statisti-
cal parallels, which do not necessarily prove a new “truth,”
but which certainly justify questioning classical history and
stimulate discussion.

Jesus Christ Gregory VII
Hildebrand

There are other arti-
cles that question clas-
sical history, such as
the one written by
J. Kessler [8]. In the
end, it was his article
that motivated me to
write something about
population models and
their use in science.
Kessler stipulates a lin-

ear dependence between a civilization event (like the in-
vention of fire, language, printing, or the Internet) and its
corresponding period of realization, which is the time needed
to get the new invention established in a population. He
then uses his “model” to argue against established history,
which, in my opinion, goes way too far! We cannot expect
that a simple model like this really describes human history.
It might elucidate certain relationships, but this model
certainly has its limitations.

Let us now look at the modelling process in general. Kas-
parov uses an exponential growth model to support his argu-
ment, Fomenko uses stochastic analysis and statistical meth-
ods, and Kessler uses a linear function. The models of Kas-
parov and Kessler are similar in that they are deterministic
models used to describe the development of a population and
to make predictions about its future. Fomenko’s model is dif-
ferent in that Fomenko does not attempt to describe human
development; he uses statistical methods to analyze the data
produced by “real” history, as recorded in historical texts. It
is clear, however, that each model, statistical or determinis-
tic, has its limitations. There are always situations where a
chosen model is not applicable. In a companion article in this
issue, I present a deterministic model, the Verhulst model
of population growth [5]. I will show how it is successfully
used to describe cell growth in a petri dish, but I will also
discuss the limitations of the model and even contradictory
predictions, if the present model is not used appropriately.
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The success of mathematical modelling stems from theo-
retical physics. Newtonian mechanics is completely formu-
lated in mathematical terms, and it proves immensely useful
for quantitative descriptions of (macroscopic) moving objects.
But still, there are many examples where Newtonian mechan-
ics is not applicable. For small objects, it is replaced by quan-
tum mechanics, and for large or fast objects, the Newtonian
theory must be extended to Einstein’s theory of relativity.
These theories provide descriptions of physical observations
with high accuracy. For that reason, they are sometimes
called “laws”(i.e., Newton’s law, Coulomb’s law, Maxwell’s
law, Fourier’s law, etc.) People tend to forget that these
“laws” are not unbreakable natural laws, but rather “mod-
els” for nature. And of course, models always have limita-
tions. Consider the never-ending invention of new particles
on the subatomic level: quarks, leptons, gluons, or antiparti-
cles. In my understanding, these are not really particles; they
are “models” for observed energy relations. If a physicist says
“quark” for example, he means a model of an object that is
characterized by certain quantum numbers [4], like spin 1/2,
Baryon number 1/3, Lepton number 0 and charge +2/3 or
−1/3.

e−

e−

e−

e+γ γ

e−

e−

Feynman diagram

Furthermore, a “particle” is
usually represented by a solu-
tion of a quantum dynamical
Schrodinger equation (or gen-
eralizations), which again is a
model for electromagnetic inter-
actions. In my understanding,
a question like “Does this new
particle exist?” must be un-
derstood as, “Does this model
describe some experiment that
cannot be described without
this model?”

My field of research is biomathematics, and I use models
to describe movement and pattern formation in cell popu-
lation [6]. Some models show a very good agreement with
experimental data. They are, moreover, well suited to identi-
fying basic principles that allow a comparison of slime molds
to leukocytes, or even finding parallels with cells in an em-
bryo. In reality, however, a cell population is a much more
complex system than a physical system. Moreover, the physi-
cal world is an intrinsic part of the cell population. Hence, we
can never expect to model a cell population down to the phys-
ical properties of its underlying molecules and proteins, etc.
Even with modern computational power this is an impossible
enterprise. What we can do, however, is to work in layers:
model the microscopic events first, and then use scaling and
homogenization to derive macroscopic models.

Numerical simulation of
bacterial pattern forma-
tion (with Y. Dolak)

When it comes to the mod-
elling of human populations,
we face the fact that a popula-
tion usually consists of states,
towns, and tribes, which con-
sist of many individuals, each
of whom has many cells and
molecules, etc. Hence, we can
expect that it is not easy to
model a population as a whole,
in particular using simple mod-
els like exponential growth or
linear dependence, which are
most likely not realistic. But it
is not impossible to work with

macroscopic models for populations. They are, for example,
successfully used to understand epidemic spread. Models for

HIV transmission, for example, contributed to the develop-
ment of prevention strategies and control mechanisms. But
again, the modeler has to be very careful and has to know
the model limitations. While the “laws” of physics appear
to be universal inside their field of applicability, population
models are flexible and they can be adapted as soon as some
new information is available. This is an important difference.
Mathematical population models should not be used as
“laws” that are equal to “truth.” This could certainly lead
to the misuse of quantitative modelling.

Let me return to the discussion of human chronology. I
think that mathematical modelling is not needed to ques-
tion the standard historical scale. The counterexamples and
open questions formulated by Kasparov, Kessler, Fomenko,
and others should provide sufficient reason to reinvestigate
historical events. To get a complete picture of the “true”
historical chronology, one possibility is to follow these three
steps: (i) use physical methods to mark astronomical events,
like supernovae, comets, and solar and lunar eclipses; then (ii)
identify historical events that correlate with these astronom-
ical events; and finally (iii) relate other dates to the events of
part (ii). Keep in mind all the open questions, and write the
chronology without political or religious intentions.

So, why do I say, “Be careful with that axe, Eugene”? The
“axe” is mathematical modelling and “Eugene” is everyone
who intends to apply this tool to human history. Be careful,
or you will hurt yourselves!
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Gambling With Your
Future—Knowing the

Probabilities
Garry J. Smith†

and Byron Schmuland∗

Gambling is the wagering of valuables on events of uncer-
tain outcome. This definition implies that an element of risk
is involved and that there is a winner and a loser—money,
property, or other items of value change hands. Gambling
also implies that at least two parties are involved—a person
cannot gamble alone, and the decision to wager is made con-
sciously, deliberately, and voluntarily.

In everyday language, the word “gambling” has broad cur-
rency; for example, activities such as farming, fishing, drilling
for oil, marriage, or even crossing a busy street are sometimes
referred to as gambles. When used in this imprecise fashion,
the concept of risk is confused with the notion of a gamble;
the main distinction being that the aforementioned activities
are not “games of chance” organized specifically to induce
wagering. Certain gray areas such as speculative investments
and playing the stock market may or may not be construed
as gambling, depending on the context and circumstances.
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Figure 1

Total revenue wagered on lotteries, casinos, and video lottery
terminals in Canada, minus prizes and winnings.

Governments and the gambling industry prefer the word
“gaming,” a euphemism for gambling designed to soften pub-
lic perception of an activity that may evoke images of illegal
activities engaged in by unsavory characters. Widespread use
of the term “gaming” is intended to recognize and reinforce
the activity’s now legal and more acceptable status.

† Professor Garry J. Smith is Gambling Research Specialist with
the Faculty of Extension at the University of Alberta. He has been
investigating gambling issues for over 15 years. His E-mail address is
garry.j.smith@ualberta.ca.

∗ Byron Schmuland is a professor in the Department of Mathe-
matical and Statistical Sciences at the University of Alberta. His E-mail
address is schmu@stat.ualberta.ca.

Until several decades ago, Canadian legal gambling was
limited to horse racing and games of chance on summer fair
midways. This situation changed as a result of amendments
to the Criminal Code of Canada in 1969 (which allowed lot-
teries, charity bingos, and casinos) and 1985 (which legalized
electronic gambling formats such as slot machines and video
lottery terminals). Legal gambling in Canada now operates
on a scale that was unimagineable 30 years ago, not only be-
cause of the proliferation of new games and gambling outlets,
but also because of relaxed provincial regulations that per-
mit gambling venues to be open longer hours and seven days
a week, increased betting limits, gaming machines equipped
with note acceptors, and on-site cash machines.

Legalized gambling in Canada has become a huge commer-
cial enterprise. Provincial governments have capitalized on
citizens’ growing tolerance toward a previously frowned-upon
social vice to fill their coffers. Figure 1 and 2 show recent
Statistics Canada (2002) data attesting to the pervasiveness
of legal gambling in Canada and the economic importance of
gambling revenues to Canadian provinces.
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Figure 2

Net income of provincial governments from total gambling
revenue less operating costs.

While overall gambling revenue in Canada expanded nearly
four-fold between 1992 and 2000, the increase was mainly due
to the popularity of casinos, lotteries, video lottery terminals,
and slot machines; their share of total Canadian gambling
revenues is 31 percent, 28 percent, 25 percent, and 15 percent
respectively. Horse racing makes up less than one percent.
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Share of total revenue (based on 2000 gambling revenue and
1999 total provincial revenue).

For most participants, engaging in gambling is a harmless
leisure pastime; that is, the games are played infrequently and
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players adhere to preset time and spending limits. A small
percentage (three to four percent) of adult Canadians have
difficulty controlling their gambling behavior; that is, they
habitually wager more than they can afford to lose and their
excessive gambling jeopardizes personal relationships, job and
school productivity, as well as mental and physical well-being.

Legalized gambling has

become a huge commercial

enterprise. Governments

have capitalized on citizens’

growing tolerance toward a

previously frowned-upon

social vice.

Gambling formats differ in their addic-
tive potency, depending on whether they
are classified as “continuous” or “non-
continuous” games. Continuous games
are seen as inherently more exciting be-
cause rapid-fire sequences of wager, play,
and outcome are possible within a short
time span; examples include video lot-
tery terminals, slot machines, and most
casino games. Non-continuous games in-
clude lotteries and raffles, where the se-
quence of wager, play, and outcome may
be spaced out over days or weeks. Prob-
lem gamblers invariably gravitate to con-
tinuous games.
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Figure 4
Expenditure per capita (amount spent on gambling by Cana-
dians 18 years of age and older in 1992 and 2000).

Controlled gambling differs from problem gambling in the
following ways:

• Problem gamblers frequently “chase” their losses; that
is, return as soon as possible to try and win their money
back. Controlled gamblers are philosophical about losses;
they see it as an entertainment fee and do not feel com-
pelled to recoup lost funds.

• Controlled gamblers are more likely to gamble for so-
cial reasons or entertainment; the main motivations for
problem gamblers are gambling to win money, to get an
adrenalin rush, or to escape from boredom or loneliness.

• Problem gamblers are prone to using gambling to reach
an altered state of reality; for example, to take on an-
other identity or enter a trance. This is because they are
usually unhappy with themselves and/or their life cir-
cumstances; gambling is a temporary haven where they
can escape the dreariness of their lives.

• Controlled gamblers generally look forward to playing,
enjoy the action, and in retrospect, have a positive feeling
about their involvement. Problem gamblers also look
forward to the action, but alternate between extremes
of excitement and depression while playing. Afterwards,
problem gamblers feel guilty and disconsolate, usually
because they have lost more than they can afford.

• Controlled gamblers are more inclined than problem
gamblers to be aware of the odds or payout percentages
of various games and to prefer gambling formats where
the application of skill can influence the outcome. Con-
versely, problem gamblers are more likely to fall prey to
what psychologists call “irrational beliefs,” “erroneous

perceptions,” the “illusion of control,”
and “magical thinking.” Examples of
these faulty cognitions in a gambling
context are as follows:

Irrational beliefs result from a lack
of understanding of probability theory;
for example, a typical gambling fallacy
is to believe in the so-called “law of av-
erages.” If, in playing roulette, a red
number turns up ten times in a row,
there is a tendency for the uninformed
gambler to think that the next number
is bound to be black, the rationale be-
ing that red or black is a 50/50 propo-
sition and, given the fact that red has
come up 10 times in a row, the law of

averages would indicate that a black number is due. The
gambler fails to recognize that each spin of the roulette
wheel is an independent event; the odds are still 50/50 no
matter what occurred on the last play, the last dozen plays,
or whenever.

Erroneous perceptions are similar to irrational beliefs in
that the gambler selectively responds to information that
he/she thinks has a bearing on the outcome of a wager. For
example, problem gambling slot machine or video lottery ter-
minal players are known to be misled by the “near miss”
phenomenon. This can occur when a slot machine player al-
most hits a jackpot; that is, the winning sequence of symbols
is only one removed from the centerline but plainly visible to
the player. This seeming “near miss” may induce some play-
ers to believe mistakenly that a big win is just around the
corner. What the player fails to appreciate is that the ma-
chines are operated by a randomly programmed microchip
and that all misses are equal, no one spin is any nearer than
another to winning the prize. Some experts contend that the
“near miss” feature is intentional, programmed into the ma-
chines to keep gamblers playing longer.

The illusion of control is a concept that refers to a gam-
bler’s belief in his/her ability to influence the outcome of a wa-
ger, when, in fact, no control is possible. For example, some
gamblers believe that there are systems of play that will allow
them to beat slot machines or win the lottery, even though for
these activities there is no optimal playing strategy; they are
strictly random outcomes. The illusion of control can also
apply to gambling formats that feature an element of skill
such as betting on the horses or sports events, because gam-
blers either tend to overestimate their own skill or discount
the fact that luck is an important outcome determinant in
these games as well.

Magical thinking is a belief in a thing, object, or action that
is not in conformity with scientific knowledge; in other words,
an unjustified or misdirected belief. In a gambling context,
magical thinking is evidenced in lottery ticket buyers who
regularly play their “lucky” numbers, even though a lottery
draw is a pure chance event; or in bingo players who carry
their “lucky charms,” believe in wearing their “lucky coats,”
or sitting in their “lucky chairs.” Players are convinced of the
“special powers” of these objects and mistakenly believe that
they increase their chances of winning.
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What are the real gambling hold percentages and
odds, and how are they calculated?

By definition, all forms of gambling contain an element of
risk. Consistent winning at any gambling format is extremely
rare and only possible if a player meets all of the following
criteria:

1. Participates in games where there is a high skill compo-
nent (e.g., poker, bridge, pool, golf, horse racing) and the
player has the requisite skills and a thorough knowledge
of the game’s odds and strategies;

2. Has a tightly controlled system coupled with a high tol-
erance for drudgery and patience to wait for optimal bet-
ting opportunities;

3. Has strong emotional control to ride out the inevitable
losing streaks without doubting their system or abili-
ties, or succumbing to the irrational thinking patterns
described above; and

4. Takes a strong-willed approach to money management;
that is, knows when to bet and how much and knows
when not to bet.

While precious few bettors possess all these attributes,
one thing to be learned from this disciplined approach is
being able to recognize favourable and unfavourable gam-
bling situations. Table 1 lists hold percentages for the ma-
jor legal gambling formats in Canada. The “hold percent-
age” is the difference between the total amount wagered and
the amount of money returned in winnings; in other words,
the amount retained by the gambling
operator. (It is important to note that
not all of the hold percentage is profit;
a portion is used to pay the overhead
expenses required to run the games).

Based on the hold

percentages, it is obvious

that most of these gambling

formats are heavily weighted

against the player; the

chances of coming out ahead

in the long run are

negligible.

Based on the hold percentages shown
in Table 1, it is obvious that most
of these gambling formats are heavily
weighted against the player; the chances
of coming out ahead in the long run are
negligible. Raffles, lotteries, bingo, video
lottery terminals, and pull tickets are
pure chance forms of gambling where no
skill can be applied to improve one’s chances of winning.
There is an element of skill involved in Sport Select games, but

any skill involved is negated by the fact that to win, a player
has to win multiple games and win them all; in addition, tie
games represent a third possible game outcome that dimin-
ishes a player’s odds of winning. “Casino games” is a mis-
leading category because some games are pure chance events
(e.g., roulette, baccarat, and slot machines), while others re-
quire some skill (e.g., poker, blackjack), and for each game,
there are a wide variety of wagering options, each with their
own odds and payback structure. For example, some bets are
long shots (e.g., picking a specific number in roulette), versus
others that give the player almost a 50 percent chance of win-
ning (e.g., betting red or black or odd or even in roulette).
Horse racing offers the most favourable payback percentage
to consumers, but even there, the hefty 19 percent “house
edge” is difficult for knowledgeable bettors to overcome.

Estimated Hold Percentages for Various
Canadian Legal Gambling Formats

Horse Racing 19%
Casino Games 21%
Pull Tickets 26%
Video Lottery Terminals 30%
Bingo 35%
Sport Select 37%
Lotteries 55%
Raffles 57%

Table 1

Outlined below are the odds for various gambling formats
and how they are derived.

A roulette wheel

A roulette wheel has
38 numbered slots: 18
red, 18 black, and two
green. You can bet on
an outcome as simple as
the colour or number that
appears, or make more
complicated bets based on
groups of numbers (e.g.,
split, street, corner, dou-
ble street). The chance of
winning a single bet is

simply the ratio of favourable out-
comes to total outcomes. For instance,
if you bet on “black,” then the chance
of winning is 18/38 = 0.473684. This
is not quite a fair bet, but the payout is
1 to 1, as if it were fair. This means the
house edge on colour bets is created by
those innocent-looking green slots.

Craps is a two-stage game that uses
a pair of dice. Three things can happen
on the first roll: you win immediately
(7 or 11), you lose immediately (2,3, or
12), or you establish a point (any other
value). If the first roll establishes a

point, you continue to roll the dice until either you roll your
point again (win) or you roll a 7 (lose). The chance of
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winning at craps is the combination of an immediate win on

A Craps table

the first roll, or hitting your point
before rolling a 7. A rather com-
plicated calculation puts the chance
of winning at 244/495 = 0.492929.
You would do better in craps with a
“don’t pass” bet. In this case, you
are betting against the roller, except
that a 12 on the first roll counts as
a tie. Subtracting the outcomes that
give a tie, we find that the chance of
winning with a “don’t pass” bet is ef-
fectively (251/495) − (1/36) divided
by 1 − (1/36); that is, 0.492987.

A useful rule of thumb is that the
more skill needed to play a game, the
better your odds of winning. Slot
machines and lotteries give you the
worst odds; you would do better with
roulette. As we calculated, the game
of craps gives even better odds than
roulette. Games that are not purely
random, but require skill, like poker
or blackjack, give the best possible
gambling odds (if played skillfully!).

The most popular lottery in
Canada is Lotto 6–49. Six numbers
are randomly chosen from 1 to 49;
the prize depends on how many of
these match the numbers on the tick-

et. If three numbers match you win $10; if all six numbers
match you win the jackpot. Of course, there are other prizes
for matching four or five numbers as well. What are your
chances?

The number of possible ticket combinations is
(
49
6

)
=

13 983 816. Your chance of winning the jackpot is therefore
one out of 13 983 816, which is 7.15 × 10−8.

As for matching three numbers, consider the numbers from
1 to 49 divided into two groups: the six numbers on your
ticket, and the 43 numbers that aren’t on your ticket. To win
$10, you need exactly three from the first group, and three
from the second group. The number of Lotto 6–49 drawings
of that type is

(
6

3

)
×
(

43

3

)
=

(6)(5)(4)

(3)(2)(1)
× (43)(42)(41)

(3)(2)(1)

= 20 × 12341 = 246820.

Thus, the chance of matching exactly three numbers is
246820/13983816 = 0.017650.

We can find all the Lotto 6–49 probabilities in the same way.
The bottom of the ratio is always equal to the total number
of Lotto 6–49 draws:

(
49
6

)
. The top of the ratio always has

two terms: 43 choose something times six choose something.
The term with 43 represents the number of ways to choose
from the 43 values not on your ticket, and the other term
represents the number of ways to choose from the six values
on your ticket. If you think of the numbers as “good” or
“bad” according to whether or not they are on your ticket,
then

(
43
6

)(
6
0

)
is the number of draws that result in six bad

numbers and zero good numbers. Similarly,
(
43
5

)(
6
1

)
is five

bad numbers and one good number, and so on. The following
table gives the complete lowdown on Lotto 6–49.

Matches Probability

0

(
43
6

)(
6
0

)
(
49
6

) = 0.43596 49755

1

(
43
5

)(
6
1

)
(
49
6

) = 0.41301 94505

2

(
43
4

)(
6
2

)
(
49
6

) = 0.13237 80290

3

(
43
3

)(
6
3

)
(
49
6

) = 0.01765 04039

4

(
43
2

)(
6
4

)
(
49
6

) = 0.00096 86197

5

(
43
1

)(
6
5

)
(
49
6

) = 0.00001 84499

6

(
43
0

)(
6
6

)
(
49
6

) = 0.00000 00715

Adding the first three probabilities in the table shows that
there is a better than 98 percent chance of losing your dol-
lar. The odds of winning $10 (matching three numbers) is
0.01765 ≈ 1/56, so on average you spend $56 to win $10. A
last bit of Lotto 6–49 trivia: if you play twice a week, every
week for 1000 years, the chances are better than 99 percent
that you will never, ever win the jackpot!

Gambling can be fun if treated as entertainment, and when
done in moderation. However, it is a bad way to invest your
money or to try to get rich. The casino (or the government, in
the case of lotteries) uses mathematical probability to ensure
it retains the edge needed to guarantee profits. There are no
games that favour the player and there is no legal betting
system, no matter how complex, which will alter this basic
fact. They rely on your ignorance to line their pockets.
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On the Dynamics of Karate

by Florin Diacu†

The origins of martial arts can be traced back to ancient
times and the systems of self-defense and fighting designed
by Oriental priests and Asian warriors. Derived from those
systems, karate, meaning “empty hand,” was developed in
Okinawa in the early 17th century after the Japanese con-
quered the island and banned the use of all weapons. Today,
millions of people are practising karate all over the world.
There exist many karate styles, four of which are recognized
by the World Karate Federation: goju, shito, shotokan, and
wado. No style is superior to any other. All of them lead
to similar results, but each of them follows specific ideas and
reflects a different philosophy.

Picture 1

Sally Chaster, 1st dan black-belt and chief instructor at the
Kuwakai club in Victoria, executes a forward punch (junzuki).

† Florin Diacu is Professor of Mathematics and the Director of
the Pacific Institute for the Mathematical Sciences at the University
of Victoria. He practices wado-style karate with the Kuwakai Club
in Victoria. Some popular science articles on other subjects, from
celestial mechanics to financial markets, are posted on his web site:
http://www.math.uvic.ca/faculty/diacu/index.html. His E-mail ad-
dress is diacu@math.uvic.ca.

Our goal here is to use a few simple mathematics and
physics tools to analyze the dynamics of karate and to draw
several conclusions on the efficiency of various techniques. Let
us start with taking a look at the forward punch (junzuki, see
Picture 1). When performing a junzuki, the goal of the karate
practitioner (karateka) is to keep the body in balance and
achieve maximum energy when the knuckles hit the target.
The fist travels a straight distance and rotates by approxi-
mately 180 degrees. Assuming that the rotation is uniform
and that the fist and the forearm are approximated with a
cylinder of radius r, the energy E is given by the formula:

E = mgh +
1

2
mv2 +

1

2
mr2ω2,

where m is the mass used in the punch, h is the difference in
the height of the body from the initial position to the posi-
tion when the punch hits the target (when stepping forward,
the body drops 15 to 20 cm), g = 9.8 m/s2 represents the
gravitational acceleration, v denotes the velocity of the fist,
and ω is the angular velocity of the fist’s rotation. The three
terms appearing on the right side of this equation are called:
potential, kinetic, and rotational energy, respectively.

This formula allows us to draw several conclusions.

1. The greater the mass, the higher the energy. We
see that the energy grows linearly with the mass. This implies
that if X is twice as heavy as Y , then X converts two times
more energy than Y . Apparently, we cannot do much about
this quantity, which depends on the frame of the body. An
arm usually weighs about 10 percent of a person’s total body,
but we can increase the mass of a punch by stepping forward.
However, unlike street fighters, who often engage most of their
body mass in a punch at the expense of losing their balance,
the karateka chooses to use less mass to favour stability. As we
will see below, there are better ways to increase the energy
of a punch or a kick without losing balance and becoming
vulnerable to a counterattack.

2. The lower the drop, the higher the energy. The
above formula shows that the energy grows linearly with the
difference in height, h, when the body is dropped. The po-
tential energy, mgh, is a substantial source since it uses the
entire mass of the body. The importance of this component
will become clear in the numerical example given in remark 4.

3. The higher the speed, the higher the energy. Unlike
mass and height difference, which are linear quantities, speed
influences energy quadratically. This means that if X and Y
have the same mass but X is twice as fast as Y , then X will
produce four times more energy; if X is three times faster
than Y , X will produce nine times more energy. This shows
that speed is an essential component in karate and in any
other physical fighting game. Fast punches and kicks are not
important only because they surprise the opponent, but also
because of their efficiency in producing energy. A karateka
who breaks boards and bricks manages to achieve the highest
speed at the moment of impact.

To better appreciate the importance of speed, let us note
that some simple computations show the following facts:

• If X weighs 50 kg and Y weighs 70 kg, then X must
punch only 18 percent faster to achieve the same effect
as Y ;

• If X weighs 50 kg and Y weighs 100 kg, then X must
punch only 41 percent faster to achieve the same effect
as Y .
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This shows that women, who are in general smaller than men,
can deliver equally effective punches if they increase their
speed.

4. The effect of the fist’s rotation is negligible. Con-
trary to what most people think, the effect of the fist’s ro-
tation is negligible in a punch. The best way to see this is
through a numerical example.

Suppose that a karateka weighing 70 kg performs a forward
punch (junzuki). Assume that the mass involved in the punch
is that of the arm alone (approximately 7 kg). The average
speed achieved by a black-belt karateka’s fist at the moment
of impact is about 7 m/s (see the table below) and that of the
first rotation, ω, is about 5π rad/s (i.e., the fist rotates 180
degrees in 0.2 seconds). Let us also assume that the radius
r of the cylinder that approximates the fist and the forearm
is 3 cm = 0.03 m. The drop in height is approximately 20
cm = 0.2 m. Then the potential energy, EP , kinetic energy,
EK , and rotational energy, ER, take the following values,
measured in Joule (J) (recall that 1 J = 0.239 calories):

EP = mgh = 70 × 9.8 × 0.2 = 137.2 J,

EK =
1

2
mv2 =

1

2
× 7 × 72 = 171.5 J,

ER = m(rω)2 =
1

2
× 7 × (0.03 × 5π)2 = 0.78 J.

This shows that the rotation accounts for 0.45% of the ki-
netic energy, 0.57% of the potential energy, and only 0.25%
of the total energy. One quarter of a percentage point is a
negligible quantity. However, we can see that the energies
converted by the drop in height and the motion of the arm
are comparable. This also explains the principle of keeping
the body at the same height in order to conserve energy. Ev-
ery up-and-down move by only 20 cm uses almost as much
energy as a punch at 7 m/s.

5. The longer the distance, the higher the energy. We
will now show that the energy changes linearly with the dis-
tance the fist travels from the time of initiating the punch to
the time of impact. For this, recall the following two physics
formulas:

v = at and L =
1

2
at2,

which indicate that the velocity, v, equals the acceleration, a,
times the time, t, and that the length, L, equals half the
acceleration times the square of the time. Eliminating t from
the two formulas, we obtain

v =
√

2La,

which means that the speed increases with the square root of
the distance. Substituting v into the expression of the kinetic
energy, it follows that

EK = mLa.

This proves the linear dependence of the energy on the dis-
tance, and shows that a longer arm can reach a higher speed
at impact. However, there is a drawback to this, which we
will discuss next.

6. The longer the distance, the longer the time. Intu-
itively, this should be clear to anybody. However, the linear
dependence is not. Eliminating the acceleration from the two
formulas written before, we obtain

t =
2L

v
.

This means that a shorter arm will reach the target linearly
faster. In other words, if X’s fist travels half the distance
of Y ’s, Y will generate two times more kinetic energy but
will need double the time to reach the target. In practice,
this is not entirely true since v is not constant. The speed
versus the position looks like the curve in Figure 1, as it is
experimentally shown in [1]. However, the linear dependence
between time and length is valid.
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Figure 1

The speed of a fist in a forward punch as a function of its
position. Data taken from a high-speed movie by J.D. Walker
of Cleveland State University.

Except for the result about rotation in remark 4, these
conclusions are also true in the case of kicks (e.g., the front
kick, or maegeri, see Picture 2). Kicks, however, are more
efficient than punches, not only because of the greater mass
of the leg, which can reach up to 20 percent of a person’s
body, but especially due to the higher speed of the kick.

A comparative experimental study for the speeds of differ-
ent techniques was done in [2]. The following table summa-
rizes the conclusions obtained by the authors.

Technique Max. speed

Front forward punch (junzuki) 5.7 − 9.8 m/s
Downward hammerfist block (otoshiuke) 10 − 14 m/s
Downward knife hand strike (shutouke) 10 − 14 m/s

Front kick (maegeri) 9.9 − 14.4 m/s
Side kick (yokogeri) 9.9 − 14.4 m/s

Roundhouse kick (mawashigeri) 9.5 − 11 m/s
Back kick (ushirogeri) 10.6 − 12 m/s

Table 1.

Speeds of different techniques.

We can now draw the following conclusion:

7. Kicks are between three and six times more pow-
erful than punches. In the example described in remark
4, we computed the average potential, kinetic, and rotational
energy of a junzuki punch performed by a black-belt karateka
weighing 70 kg. We found the total energy was 309.48 J.
Assuming now that the leg of the same person weighs 14 kg,
that the speed of the kick is 12 m/s, and that there is no drop
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in height when executing the kick, we obtain that the energy
developed by the technique, given by the kinetic energy alone,
is

E = EK =
1

2
mv2 =

1

2
× 14 × 122 = 1008 J.

This shows that the front kick is at least three times stronger
than the forward punch. If the punch is executed without
stepping forward and dropping the body, then its energy is
171.5 J, which is almost six times less than the value obtained
for the kick.

Picture 2

Norma Foster, 6th dan black-belt and the highest-ranked
wado-karate woman in the world, performing a front kick
(maegeri).

Similar estimates can be done for all kicks and punches,
verifying the conclusion stated at the beginning of remark 7.
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A math professor, a native Texan, was asked by one of his stu-
dents: “What is mathematics good for?”

He replied: “This question makes me sick! If you show someone
the Grand Canyon for the first time, and he asks you, ‘What’s it
good for?’ what would you do? Well, you’d kick that guy off the
cliff!”

c©Copyright 2003
Wieslaw Krawcewicz

A mathematician organizes a raffle in which the prize is an in-
finite amount of money paid over an infinite amount of time. Of
course, with the promise of such a prize, his tickets sell like hot
cakes.

When the winning ticket is drawn and the jubilant winner comes
to claim his prize, the mathematician explains the mode of pay-
ment: “1 dollar now, 1/2 dollar next week, 1/3 dollar the week
after that . . . ”

Q: What do you get if you cross an elephant with a grape?

A: |elephant||grape| · sin(θ).

Theorem. Every positive integer is interesting.

Proof. Assume that this is not so; that is, there are uninterest-
ing positive integers. Then there must be a smallest uninteresting
positive integer. But being the smallest such number is an ex-
tremely interesting property!

11



Leonhard Euler
Alexander Litvak†

and Alina Litvak∗

This year, St. Petersburg celebrates its 300th anniversary.
This gorgeous city, one of the most beautiful in the world, was
created by the desire and power of a single man—Russian czar
Peter the Great. Peter founded the city in 1703 in an empty
and swampy place. He sought to transform Russia into a more
civilized, cultured, and developed country, to “westernize” it.
Peter was changing Russia, almost rebuilding, and for this he

Peter the Great

needed a new face, a new capital, the
most beautiful and luxurious city
in Europe. The construction of St.
Petersburg was extremely difficult.
Thousands of workers died from dis-
ease, the cold, and the unbearable
living conditions. But Peter had no
time to wait. In 1712, the capital
of the Russian empire moved from
Moscow to St. Petersburg. Peter
wanted not only to build the city
of his dreams, he wanted St. Peters-
burg to be the cultural and scientific
center of Russia. There was a lack
of educated, skilled people in Russia

at the time—it’s hard to believe, but not all Russian no-
blemen could read and write, and very few spoke foreign
languages. Peter sent the youth of Russian nobility to study
abroad, and invited foreign specialists in different fields to
work in Russia. Many architects, sculptors, and engineers
from Denmark, Holland, France, Germany, Italy, and other
countries came to Russia, building and decorating its cities,
creating its navy, forming its industry. When Peter died, his
wife Catherine the First continued his reforms. In 1725, she
established the Russian Academy of Science. As was common
in those times, she invited many foreigners to work in the
newly-created Academy. Many great scientists came to the
young capital of the Russian Empire. Among them was one
the leading mathematicians of the 18th century—Leonhard
Euler.

† Alexander Litvak is a professor in the Department of Math-
ematical Sciences at the University of Alberta. His web site is
http://www.math.ualberta.ca/Litvak A.html and his E-mail address
is alexandr@math.ualberta.ca.

∗ Alina Litvak is a software engineer employed by Intuit Canada
Limited in Edmonton.

An old painting of the monument to Peter the
Great in St. Petersburg

Euler was born in Basel, Switzerland on April 15, 1707.
His father was a pastor and, as was usual, he wanted his son
to also become a minister. He sent Euler to the University
of Basel to study theology. However, it turned out that the
young man had a gift for mathematics and loved it very much.
Johann Bernoulli, the Swiss mathematician, paid attention to
the talented student and convinced the elder Euler to allow
his son to change his specialization to mathematics. Euler
continued to study at the University of Basel and finished in
1726. He published his first research paper in 1726 and his
second in 1727. His work on the best arrangement of masts
on a ship was submitted for the Grand Prize of the Paris
Academy of Science and won second place. That was a big
achievement for the young mathematician. In 1726, Euler
was offered the physiology post at the Russian Academy of
Science.

The Russian Academy of Science in Saint
Petersburg.

He accepted the offer and arrived in St. Petersburg in 1727.
D. Bernoulli and J. Hermann, who were already working at
the Russian Academy, helped Euler to join the mathematics–
physics division, which meant that he also became a full mem-
ber of the Academy. The same year, Euler married Katherine
Gzel, daughter of a Swiss painter who worked in St. Peters-
burg.

In 1736, Euler published the two-volume work “Mechan-
ica, sive motus scientia analytice exposita,” where he applied
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mathematical analysis methods to the problems of motion in
a vacuum and in a resisting environment. This work earned

Frederick the Great

him world fame. Euler developed
some of the first analytical methods
for the exact sciences; he started to
apply differentiation and integration
to physical problems. By 1740, Eu-
ler had attained a very high profile,
having won the Grand Prize of the
Paris Academy of Science in both
1738 and 1740. He had also written
the wonderful “Direction to Arith-
metic,” which was later translated
into Russian. It was the first Rus-
sian book to represent arithmetic as
a mathematical science.

In 1740, after the death of the Empress Anna Ioanovna,
two-month-old Ioan IV was declared Emperor of Russia. As
he was too young to rule, his mother, Anna Leopoldovna, be-
came regent. Living in Russia became dangerous, especially
for foreigners, and Euler decided to accept the invitation of
Frederick the Great, the King of Prussia, to work in Berlin.
There, Euler was met with great respect and was given the
freedom to pursue his research as he wished. However Eu-
ler didn’t completely end his work for Russian Academy. He
was still partially paid by Russia, and he continued to write
reports for the Academy and teach young Russians who ar-
rived in Berlin. The Russians respected him so much that
when his house was destroyed by Russian troops during the
Russian–Prussian war, Euler received full compensation.

Euler’s 25 years in Berlin were very busy and productive.
He enjoyed great mathematical success and also found time
to accomplish all kinds of social work. For example, he served
on the Library and Scientific Publications Committee of the
Berlin Academy and was a government advisor on state lot-
teries, insurance, annuities and pensions, and artillery.

Euler wrote nearly 380 articles during his Berlin period. He
also wrote many scientific and popular science books, includ-
ing his famous “Letters to a Princess of Germany,” which
was translated into many languages and published almost 40
times. He also led the Berlin Academy of Science after the
death of Maupertuis in 1759, although he never held the for-
mal title of President.

Euler’s phenomenal ability to work is demonstrated by the
fact he produced about 800 pages of text per year. That
would be a significant number even for a novelist; for a math-
ematician, it is hardly believable. Euler made a big contribu-
tion to analysis, geometry, trigonometry, and number theory,
and introduced such notation as f(x) for function,

∑
for

sum, e for the base of natural logarithm, π for the ratio of
the length of a circle to its diameter, and i for imaginary unit.
Euler proved the following formula for a convex polyhedron:
V +F = 2+E, where V is number of vertexes of the polyhe-
dron, F is number of faces of the polyhedron, and E is number
of edges of the polyhedron. This formula has the extension,
very important in topology, called Euler characteristics. In
addition to his work in mathematics, Euler published works
in philosophy, astronomy, physics, and mechanics.

Using the graph theory that he introduced, Euler solved
the following famous problem, the so-called “Königsberg’s
Bridges Problem.”

Problem: The Pregel river in Königsberg has the form
shown in the picture below. There are seven bridges across
it. Would it be possible, walking through the town, to cross

each bridge exactly once?

Königsberg Bridges

Euler was able to show that this is impossible; moreover he
described precisely the form of the river and bridges required
to reach an affirmative solution.

Catherine the Great

In 1762, the politics in Russia changed again. Empress
Catherine II, later named “Catherine the Great,” came to the
throne. The atmosphere in Russian society improved dramat-
ically. Catherine was an extraordinary person, very talented
and educated. She aimed to create in Russia a regime of “Ed-
ucated Absolutism.” She invited many progressive people to
Russia—she was in correspondence with Voltaire, she wrote
books and plays, and she was very interested in art and in
science. Catherine II also started one of the most famous and
beautiful museums in the world, the Hermitage. The time
of her rule is called the “Gold Century” of Russian history.
Catherine the Great understood very well that the country
couldn’t prosper without science. She knew also that the sci-
ence could enhance her prestige. She increased the budget of
the Academy to 60 000 rubles per year, which was much more
than the budget of the Berlin Academy.

Catherine II offered Euler an important post in the math-
ematics department, conference-secretary of the Academy,
with a big salary. She instructed her representative in Berlin
to agree to his terms if he didn’t like her first offer, to ensure
that he would arrive in St. Petersburg as soon as possible.

In 1766, Euler returned to St. Petersburg. Soon after, he
became almost blind due to a cataract in his left eye (his right
eye was already very poor). However, that didn’t stop him
from working. Euler dictated his works to a young boy, who
wrote them in German. In 1771, his home was destroyed by
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fire and he was able to save only himself and all of his math-
ematical manuscripts except the “New Theory of the Motion
of the Moon.” Fortunately, Euler had an exceptional mem-
ory, which helped him restore the manuscript quite quickly.
After the fire, Euler was obliged to move into a new house, the
interior of which was unknown to him. This was extremely
difficult for a blind old man.

An old painting of the Mikhalovsky Castle in St.
Petersburg

In September 1771, Euler had surgery to remove his
cataract. The surgery took only three minutes and was very
successful—the mathematician’s vision was restored. Doc-
tors advised Euler to avoid bright light and overloading his
eyes; reading and writing were forbidden. Unfortunately, Eu-
ler didn’t take care of his eyes; he continued to work and
after a few days lost his vision again, this time without any
hope of recovery. Euler took this quietly, with great courage.
Amazingly, his productivity only increased. Despite his to-
tal blindness, Euler wrote almost half of his articles after his
return to St. Petersburg.

The Winter Palace, the Emperor’s residence (now
the main building of the Hermitage Museum)

In 1773, Euler’s wife died. They were together almost 40
years and had 13 children. At that time, the mortality rate for

children was very high, and eight of their children died before
reaching adulthood. After his wife’s death, Euler continued to
work diligently, using his son’s and some of his student’s eyes
for reading. He worked until September 18, 1783, the last day
of his life. According to his biographer, on that day Euler gave
a mathematics lesson, worked on mathematics, and discussed
with Lexell and Fuss the planet Uranus, recently discovered
by astronomers. He died in the evening.

German and Russian postal stamps dedicated to
Euler
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Denis Diderot was a French philosopher in the 18th century.
He traveled Europe extensively, and on his travels stopped at the
Russian court in St. Petersburg. His wit and suave charm soon
drew a large following among the younger nobles at the court—
and so did his atheist philosophy. That worried Empress Catherine
the Great very much. . .

Swiss mathematician Leonhard Euler was working at the Rus-
sian court at that time and, unlike Diderot, he was a devout Chris-
tian. So, the Empress asked him for help in dealing with the threat
posed by Diderot.

Euler had himself introduced to Diderot as a man who had
found a mathematical proof for the existence of God. With a stern
face, the mathematician confronted the philosopher: “Monsieur,
(a + bn)/n = x holds! Hence, God exists. What is your answer to
that?”

The usually quick-witted Diderot was speechless. Laughed at
by his followers, he soon returned to France.
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Vedic Mathematics

by Jeganathan Sriskandarajah†

Sri Bharati
Krsna Tirthaji

Vedic Mathematics is based on
16 sutras (or aphorisms) deal-
ing with mathematics related
to arithmetic, algebra, and ge-
ometry. These methods and
ideas can be directly applied to
trigonometry, plain and spher-
ical geometry, conics, calculus
(both differential and integral),
and applied mathematics of var-
ious kinds. It was reconstructed
from ancient Vedic texts early in
the last century by Sri Bharati
Krsna Tirthaji. Bharati Krsna
was born in 1884 and died in
1960. He was a brilliant In-
dian scholar with the highest hon-
ours in the subjects of Sanskrit,
Philosophy, English, Mathemat-
ics, History, and Science. When
he heard about the parts of the
Vedas containing mathematics,
he resolved to study these scrip-

tures and find their meaning. Between 1911 and 1918, he
was able to decode from the ancient Sutras the mathematical
formulae that we now call Vedic Mathematics.

The Sanskrit word Veda means knowledge, and the Vedas
are considered the most sacred scripture of Hinduism referred
to as sutras, meaning what was heard by or revealed to the
seers. Vedas are the most ancient scriptures dealing with
all branches of knowledge—spiritual and worldly. Although
there is an ongoing dispute regarding the age of the Vedas,
it is commonly believed that these scriptures were written
at least several centuries BC. The hymns of the Rig Veda
are considered the oldest and most important of the Vedas,
having been composed between 1500 BC and the time of the
great Bharata war, about 900 BC. The Vedas consist of a
huge number of documents (there are said to be thousands of
such documents in India, many of which have not yet been
translated), which are shown to be highly structured, both
within themselves and in relation to each other. The most
holy hymns and mantras are put together into four collections
called the Rig, Sama, Yajur, and Atharva Vedas. They are
difficult to date, because they were passed on orally for about
1000 years before they were written down. More recent cate-
gories of Vedas include the Brahmanas, or manuals for ritual
and prayer. Subjects covered in the Vedas include: grammar,
astronomy, architecture, psychology, philosophy, archery, etc.

One hundred years ago, Sanskrit scholars translating the

† Jeganathan Sriskandarajah is an instructor at Madison Area Tech-
nical College, where he recently organized the first annual “Pi Day”:
http://matcmadison.edu/is/as/math/mathclub/Piday03/Piday03.html. He is
also the State (Wisconsin) Director for American Mathematics Competitions
and a recipient of the Mathematical Association of America’s Meritorious
Service Award in 1998. His E-mail address is jsriskandara@matcmadison.edu.

Vedic documents were surprised at the depth and breadth
of knowledge contained in them. Some documents, called
‘ganita sutras’ (the name ‘ganita’ means mathematics), were
devoted to mathematical knowledge. In these sutras, which,
for example, addressed the geometry of construction of sac-
rificial altars, geometrical figures such as straight lines, rect-
angles, circles and triangles are discussed in a very profound
manner. There are various descriptions of the rules for trans-
formations, including the ‘Pythagorean’ theorem. The proof
of this theorem, as described in the Vedas, is illustrated in
Figure 1.
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Figure 1

The area of the trape-
zoid ACDE is equal
to the sum of the ar-
eas 4ABC + 4ABE +
4BDE. Thus,

(a + b)2

2
=

ab

2
+

c2

2
+

ab

2

=⇒ c2 = a2 + b2.

The Apollonius theorem, which states for a triangle with
sides a, b, and c and median m to the side with length a, that

b2 + c2 = 2m2 +
a2

2
,

was also described in the Vedas. Its simple proof, as presented
in scripture in the Vedas, can be summarized in a few lines
(see Figure 2):

x y x + y

m
pb c

a

Figure 2

b2 + c2 = x2 + p2 + (x + 2y)2 + p2

= 2(y2 + p2) + 2(x + y)2

= 2m2 +
a2

2
.

The areas of a triangle, a parallelogram, and a trapezoid, as
well as the volume of a prism, a cylinder, and a pyramid, are
also discussed in sutras. The quadratic equation is utilized for
the enlargement or reduction of the altar’s size. The Vedic
Hindus knew that the numbers

√
2 and

√
3 are irrational.

Although there is no explanation in the Vedas how that was
discovered, several derivations of their approximate values are
embedded in the text itself. Other favourite mathematical
topics in the Vedas are permutations and combinations. A
special method for finding the number of combinations, called
meru prastara, is described in Chandah sutras (200 BC). It
is basically the same triangular array commonly known as
Pascal’s triangle.

The most important Hindu achievement is the decimal posi-
tional system. Let me point out that in European mathemat-
ics, the decimal system appears only after the 14th century,
and the notions of subtraction and zero were not introduced
until the 16th century. All of the quantities in European
mathematics had dimensions and purely geometric charac-
ters.

It is amazing how advanced and sophisticated Hindu math-
ematics was, a thousand years before the development of Eu-
ropean mathematics. In the Hindu decimal system, there are
nine symbols called anka (which means ‘mark’) for the numer-
als from one to nine, and the zero symbol called sunya (which
means ‘empty’). The Hindu name for addition was Samkalita,
but the terms Samkalana, Misrana, Sammelana, Praksepana,
Ekikarana, Yukti etc., were also used by some writers. Sub-
traction was called Vyukatkalita, Vyutkalana, Sodhana, and
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Patana; multiplication was called Gunana, Hanana, Vedha,
Ksaya; and division, regarded as the inverse of multiplication,
was called Bhagahara, Bhajana, Harana. The remainder was
called Sesa or Antara, and the quotient Labdhi or Labhdha.
While European mathematics even in the 16th century did
not consider powers of a degree higher than three (since they
were not making sense from the geometric point of view), cen-
turies earlier Hindu mathematics studied algebraic equations
of degree six or higher. There was even a symbol used for the
unknown, which was called Varna, and the unknown quan-
tity was called Yavat-Tavat. Equations with one unknown
were called Eka-Varna-samikarana, and equations with sev-
eral unknowns were called anekavarna-samikarana. There are
many more examples of advanced mathematical knowledge
contained in the Vedas.

The Vedic methods in arithmetic that were discovered by
Sri Bharati Krsna Tirthaji are astonishing in their simplicity.
For example, multiplication of large numbers can be done in
such an easy way that all the computations and the answer
can usually be written in just one line. People who grasp some
of the Vedic techniques sometimes dazzle audiences, pretend-
ing to be prodigies with a supernatural ability to do com-
plicated computations quickly in their minds. However, it is
important to note that no special talent is needed and any-
body can take advantage of these ancient methods to improve
his or her arithmetic skills. Let me emphasize that many of
the mathematical methods described in the Vedas were previ-
ously unknown and created great amazement among scholars.
In comparison, the circumstances surrounding the discoveries
of many ancient Greek or Roman manuscripts dealing with
mathematics are considered to be rather suspicious. None of
these ancient manuscripts contained any “new” mathemati-
cal knowledge, previously unknown to the scientists. This is
not the case for the Vedas, which continue to be analyzed,
leading to new revelations.

The Vedic methods are direct, and truly extraordinary in
their efficiency and simplicity. They reflect a long mathemati-
cal tradition, which produced many simplifications, shortcuts
and smart tricks. Arithmetic computations cannot be ob-
tained faster by any other known method.

Example 1. A simple idea for factorization of polynomial ex-
pressions of two or more variables is rooted in Adyamadyena
Sutra—Alternate Elimination and Retention. Let us con-
sider, for example, the polynomial P (x, y, z) = 2x2 + 6y2 +
3z2 + 7xy + 11yz + 7xz, which can be factorized by setting
z = 0:

P (x, y, 0) = 2x2 + 7xy + 6y2 = (2x + 3y)(x + 2y), (1)

and next, setting y = 0:

P (x, 0, z) = 2x2 + 7xz + 3z2 = (2x + z)(x + 3z). (2)

By comparing the obtained factorizations (1) and (2) and
completing each factor with the additional terms from the
other factorization, we obtain the factorization of P (x, y, z):

P (x, y, z) = (2x + 3y + z)(x + 2y + 3z). (3)

Also, notice that on substituting x = 0, we obtain P (0, y, z) =
6y2 + 11yz + 3z2 = (3y + z)(2y + 3z), in accordance with the
factorization (3).

Example 2. It is also possible to eliminate two variables at
a time. For example, consider the polynomial Q(x, y, z) =
3x2 +7xy +2y2 +11xz +7yz +6z2 +14x+8y +14z +8. Such

eliminations lead to

Q(x, 0, 0) = 3x2 + 14x + 8 = (x + 4)(3x + 2)

Q(0, y, 0) = 2y2 + 8y + 8 = (2y + 4)(y + 2)

Q(0, 0, z) = 6z2 + 14z + 8 = (3z + 4)(2z + 2).

Using a completion method similar to Example 1, we obtain

Q(x, y, z) = (x + 2y + 3z + 4)(3x + y + 2z + 2).

It is easy to verify that this is indeed a factorization of the
polynomial Q(x, y, z).

Example 3. In conventional arithmetic, there is no shortcut
to multiplying the number a = 87 by b = 91; this can be done
only by ‘long multiplication.’ But the Vedic method sees these
numbers are close to 100 (i.e., the numbers m = 100 − a and
n = 100 − b are relatively small). Since a · b = a(100 − n) =
100(a − n) + mn = 100(b − m) + mn, there is a very simple
way to multiply these two numbers quickly:

87 13
×

91 9

100×(87 − 9)
100×(91 − 13) +117

7800 +117
7917

subtractsub
tra

ct

a m

b n

100(a− n)

100(b−m)

Result

Example 4. Another way of doing a similar multiplication is
illustrated below, where we show how to compute the product
78 × 52 using vertical and crosswise multiplication:

First
Digits

Second
Digit

Third
Digit

7

5
×

7

5

8

2
× 8

2
×

1614 + 4035
61←45←35

40 5 6
ANSWER:

4056

This method can be used to multiply large numbers as well.
Let us, for instance, compute the product 321 × 52:

First
Digits

Second
Digit

Third
Digit

Forth
Digit

Fifth
Digit

3

0
×

3

0

2

5
× 3

0

2

5

1

2

2

5

1

2
× 1

2
×

6 + 10 + 015 + 00 4 + 5 2
61←51←0 9 2

9 21 6 6
ANSWER:
16692

The product 6471×6212 can be computed in a similar way:

6

6
×

6

6

4

2
× 6

6

4

2

7

1

6

6

4

2

7

1
×1

2

4 7 1 7 1 1

2 1 2 1 2 2
×

6 + 8 + 4212 + 2436 12 + 4 + 14 + 6 8 + 7 + 2 14 + 1 2
95←14←40 73← 81← 51← 2

We obtain the answer 40197852.

There are several books written about this fascinat-
ing subject, including Vedic Mathematics, by Jagadguru
Swami Sri Bharati Krsna Tirthaji Maharaja. Also see
the Internet web sites http://www.vedicmaths.org and
http://www.mlbd.com. In many schools, the Vedic system
is now being taught to students. “The Cosmic Calculator,” a
course based on Vedic math, is part of the National Curricu-
lum for England and Wales.
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Solar Eclipses for

Beginners
by

Ari Stark†

If the article on eclipses in our last issue was too “technical”
for you, maybe this simpler one will help to ease you into
that fascinating subject. To get oriented, let us look at the
following picture, which shows the sun (yellow), the moon
(gray), but no Earth. Instead, it has three little square dots
(red, orange, blue) in the gray areas behind the moon—they
represent possible locations for an observer.

��

�

Annular

Total

Partial

SUN

MOON

Figure 1

Three types of solar eclipses: total, annular, and partial.

An observer at the red dot would have his view of the sun
just barely blocked by the moon. If he displaced himself to-
ward the moon, this total eclipse would only become more so;
if he went the other way (cf. orange dot) the moon would no
longer cover the whole sun, but its shadow would still appear
as a complete black disk on the sun (annular eclipse). An
observer in the light gray area (cf. blue dot) would see only
a part of the moon’s shadow taking a bite out of the upper
or lower half of the sun (partial eclipse).

Since all three types occur on Earth, the distance moon-
Earth must be somewhat variable—but let us imagine a world
without annular eclipses: both sun and moon orbit the Earth
in concentric circles at uniform speeds, watched by an ob-
server at the immobile center of the Earth, suspended so as
not to notice the daily spin. As we shall see in retrospect, this
simple model yields results consistent with those obtained in
the last issue. For starters, let’s try to understand what’s
going on in principle.

If the moon were orbiting the Earth in the same plane as
the sun, it would get in the sun’s way once every month (when
it is “new”), and throw its shadow on our central observer.
In fact, the latter has long ago charted the sun’s course (the
“ecliptic”) on the inside of the hollow sphere that houses him,
and measured the moon’s farthest separation from this course
to be 5◦. Therefore he concludes that the moon’s orbital plane

† Ari Stark is a pen-name here used by Klaus Hoechsmann (cf.
page 24) in honour of Aristarchos, the pioneer of such considerations.
His E-mail address is hoek@pims.math.ca.

is tilted about 5◦ with respect to the sun’s. The intersection
of those two planes is called the nodal line, and eclipses occur
if sun and moon simultaneously get close to it, i.e., the angle
β = ∠SEM (sun-earth-moon) is small. Here is the picture.

��
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Upper partial

Figure 2

Earth at two different points of the moon’s shadow cone.

Wild, eh? That’s because the Earth is shown twice, once
as it touches the region of total eclipses, and another time for
partial eclipses. In the second case, β is easier to study: it is a
certain “blue angle” γ (to be identified presently) plus a little
black sliver ε whose tangent is (R − R0)/D, where R is the
radius of the sun, R0 that of the Earth, and D the distance
sun–Earth. The blue angle γ is defined by the Earth–moon
axis and the crossing tangent line; it is shifted into the light
blue rectangular strips (look at the lower one!) by parallelity.
The reason it does not look entirely blue in the upper strip is
that a certain red sliver δ, of tangent (R + R0)/D, has been
subtracted from it.

Since the apparent sizes of sun and moon, as seen from
Earth, are very nearly equal (watch a total eclipse!), we
have R/D = r/d. We really don’t need D itself, but the ratio
R0/D = o. In these terms the values of β in the two cases are
therefore γ + ε and γ − δ, respectively, where tan ε = r/d− o
and tan δ = r/d + o.

��

Figure 3

The blue angle γ

As Figure 3 shows, the blue an-
gle γ itself sits in a right triangle
opposite a side of length R0 + r,
where r is the radius of the moon.
Therefore sin γ = (R0 + r)/d,
where d denotes the distance be-
tween Earth and moon.

In summary: β must be smaller
than γ + ε for a partial eclipse,
and smaller than γ − δ for a total
or annular eclipse, where γ, δ and
ε are as defined above.

So far nothing but description—now to the numbers. The
following distances are measured in moon radii (mr):

• d = 220 mr: distance from earth to moon,

• R0 = 3.67 mr: radius of the earth.

These approximate values are good enough for us—and ob-
tainable by fairly simple observations. You can estimate d by
watching total solar eclipses: if you time them, you can see
the moon’s disk crossing the entire sun in about an hour.
This means that the moon is cruising along its path in the
sky at the rate of about one diameter an hour. It take four
weeks for the moon to do one full turn around Earth: that
makes 28 × 24 hours—and hence the same number of moon
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diameters! To estimate the radius of the circuit, we divide
by six and thus obtain 28 × 4 = 112 moon diameters (= 224
mr) for the distance Earth-moon. Not quite: a full circuit of
the moon as seen from space is only 27 days and eight hours.
You can check that by watching the moon wander through
the Zodiac—whence the name sidereal month (Latin sidus =
constellation). Our lunar month (one new moon to the next)
is longer because we have to wait for the moon to catch up
with the moving sun.

From the moon’s cruising speed, Earth’s radius can be
found by timing total lunar eclipses. Here the moon takes
about three hours and 40 minutes to tunnel through Earth’s
shadow—at a speed of one diameter per hour. If, as they
tell us, the sun is “much farther” away than the moon, the
earth’s shadow will be roughly as wide as the earth itself,
i.e., approximately 3.67 moon diameters. That is why we put
R0 = 3.67 mr.

The only important fact about D is that it is so much big-
ger than R0 as to make o = R0/D negligible in comparison
with r/d. Putting D/d = K, it is not hard to see that o will
be (367/K)% of r/d. Modern astromers assure us that K is
about 400, so all is well. But with their simple instruments,
the ancient Greeks obtained values ranging from 20 (Aristar-
chos) to 1000 (Eratosthenes). That K is “big” is clear to
anyone who has observed a half moon high in the sky with
its bright half pointing westward almost horizontally instead
of pointing at its light source, the setting sun.

Using the values obtained so far, we get sin γ = 4.67/220;
whence γ = 1.2◦. To estimate the slivers to be added and sub-
tracted from it, we simply omit o and stay with r/d = 1/220,
which is the tangent of 0.26◦; in other words, we estimate
ε = δ = 0.26◦. Hence β must be smaller than 1.46◦ for a
partial eclipse, and smaller than 0.94◦ for a total one. To
ensure that a quick brush with the shadow of the moon is not
counted as a partial eclipse, let us adjust the 1.46◦ downward,
say, to 1.4◦. Question: How often—in all the tuneful turning
of the sun—does β fall below these bounds?

to sun
E

N

M

A
�

�

Figure 4
Tetrahedron NAME .

To answer it, we shall relate β to an angle α in the orbital
plane of the moon. Consider the tetrahedron NAME shown
on Figure 4, where the orbital planes of sun and moon are
given by the triangles, ANE and NEM , respectively, and
NE is the nodal line; A is the “apparent sun,” a point on
the line SE that lies in the plane perpendicular to NE.
Of course, β = ∠AEM , d = ME, and we define α to be
∠MEN . We shall say: “the moon is overtaking the sun,”
when M is directly above A, i.e., when ∠MAN = 90◦. At
that point, all faces of NAME are right triangles. In partic-
ular, MA = d sin β and MN = d sin α. On the other hand,
MA = MN sin 5◦, because ∠MNA is the famous 5◦ separa-
tion between the orbital planes. Putting it all together, we
get

sin β = sin α · sin 5◦.

Since sin 5◦ = 0.087, it follows that β is less than 0.94◦ or
1.4◦, respectively, if α is less than 10.5◦ or 16◦, respectively.

We can now gauge the likelihood of an eclipse by angles in
the moon’s orbital plane. Thus, we have a “partial danger
zone” of 16◦ and a “total danger zone” of 10.5◦ on either
side of the nodal line: if the moon overtakes the sun inside
these zones, there is an eclipse somewhere on Earth. When
projected onto the ecliptic, these zones practically retain their
size since cos 5◦ = 0.996 is so close to 1.

As the sidereal month of 27.3 days is well within the interval
of 32 days the sun must spend in that partial danger zone, one
partial eclipse is certain in that time, even two of them are
possible—and this situation repeats half a year later, when
the sun gets to the other end of the nodal line.

What is the probability of an eclipse on a day chosen at
random? Well, the sun must be in its danger zone of 64◦ out
of 360◦, and the moon must overtake it on that particular
day out of the 27.3 days per circuit. Probability: 8 out of 45
times 27.3—or 1/154. What about total eclipses? The same
thing multiplied by 42/64—or 1/234.

This is as far as simple observations will take us. Not bad—
but the article by Hermann Koenig in our last issue contains
much more information: let’s go and look at it again.

The shortest of all math jokes: Let ε < 0.

A newlywed husband was discouraged by his wife’s obsessions
with math. Afraid of playing second fiddle to her profession, he
finally confronted her:

“Do you love math more than me?”

“Of course not dear, I love you much more.”

Happy, although skeptical, he challenged her: “Well then, prove
it.”

Thinking a bit, she responds, “Okay, let epsilon be greater than
zero. . . ”

Math problem? Call 1-800-[(10x)(13i)2]-[sin(xy)/2.362x].
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Applications and
Limitations of the
Verhulst Model for

Populations
Thomas Hillen†

In this article, I use the ongoing discussion about math-
ematical modelling of historical data as an opportunity to
present a classical population model—the Verhulst model
for self-limited population growth (Verhulst 1836 [3]). I will
introduce scaling techniques and demonstrate the method of
perturbation expansions to understand the usefulness and the
limitations of this model.

We assume that u(t) describes the size of a population at
time t. The Verhulst model (or logistic growth model) is a
differential equation, which relates the change in population
size over time, du/dt, to birth and death events that occur
over time:

d

dt
u(t) = ru(t)

(
1 − u(t)

K

)
, (1)

where r is the per capita birth rate and K is the carrying
capacity. The parameter K is a measure of the available re-
sources. If a population reaches the size K, then all resources
are used to keep the population level at K and no further
growth is possible. If we use this model to describe the devel-
opment of a population, which at initial time t = 0 has the
size M , then the solution is given by:

u(t) =
KM

(K − M)e−rt + M
. (2)

Exercise 1: Check that u(t) is indeed a solution of the
Verhulst model. What does u(t) look like? What happens
for t → 0 and what happens for t → ∞? Use a computer to
graph this function. Play around with the parameters r, K,
and M . What do you observe?

The Verhulst model can be used, for example, to describe
experimental data collected by Gause [2] on the growth of
bacteria populations Paramecium aurelia and Paramecium
caudatum. The time unit is days, and the populations are
measured in individuals per cm3. In the following graph, you
see the data for these two measurements and the solution
curves of the corresponding model. For P. aurelia, we have a
birth rate of r = 0.79 per individual per day and a carrying
capacity of K = 543.1 individuals per cm3. For P. caudatum,
we have r = 0.66 and K = 202.6.

† Thomas Hillen is a professor in the Department of Mathematical
Sciences at the University of Alberta.
His web site is http://www.math.ualberta.ca/∼thillen/ and his E-
mail addresss is thillen@math.ualberta.ca.
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Figure 1

Comparison of the Verhulst model with Gause’s experimental
data for the growth of P. caudatum and P. aurelia (from [1]).

For both experiments, we observe nearly exponential
growth at the onset, which eventually goes into saturation
and converges to its carrying capacity.

The Verhulst model is a deterministic model, which means
it does not include any stochastic components. Hence the
fluctuations about the level of K, as seen in the measure-
ments, cannot be explained by this model.

Let’s now have a more theoretical glance at the general
Verhulst model (1) and study two special cases: Case 1:
unlimited resources and Case 2: small resources and small
birth rate. I will use these cases to illustrate the method
of perturbation analysis, which is widely used in applied
mathematics.

Case 1: Unlimited resources. We assume that the carry-
ing capacity K is large compared to typical population sizes.
Then ε = 1/K is a small quantity. We rewrite the Verhulst
model as

d

dt
u = ru − εru2. (3)

Now we consider a perturbation expansion in ε:

u(t) =

N∑

j=0

εj uj(t), N ≥ 2 (4)

and we try to determine the coefficient functions uj(t) for
j = 1, . . . , N . It might look funny to replace one function
u(t) by a whole set of unknown functions uj(t), j = 1, . . . , N .
In the expansion above, terms are arranged according to
their relative importance. Since ε is a small number (e.g.,
ε = 10−2), the higher exponents, εj , are even smaller. Hence
we expect that the main information is carried by the first
term u0(t). The other terms are corrections to u0. We call
u0(t) the leading-order term and uj(t) for j ≥ 1 the j-th order
correction.

Now we use the above expansion (4) and plug it into the
equation (3)

N∑

j=0

εj d

dt
uj =

N∑

j=0

rεjuj − εr




N∑

j=0

εjuj




2

.
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To find the coefficient functions uj we compare orders of
ε, which means we collect terms that have the same power of
εj :

ε0 :
d

dt
u0 = ru0,

ε1 :
d

dt
u1 = ru1 − ru2

0,

ε2 :
d

dt
u2 = ru2 − 2r(u0u1),

ε3 :
d

dt
u3 = ru3 − r(2u0u2 + u2

1),

. . .

These are differential equations for the coefficient func-
tions uj . We need to specify some initial conditions. The
leading-order term is supposed to carry the major informa-
tion, hence it is reasonable to assume that initially

u0(0) = M, uj(0) = 0, for j = 1, . . . , N.

We observe that the linear growth model

d

dt
u0 = ru0

appears as a leading-order approximation (ε0-equation) to the
Verhulst model. It is solved by

u0(t) = Mert.

Now we can use this function u0(t) to solve the ε1-equation
for the first-order correction,

u1(t) = M2(ert − e2rt).

From there, we can find the higher-order corrections
u2(t), u3(t), etc. Solving the εj-equations in a row we
obtain a sequence of approximations to u(t). The leading-
order approximation is u0(t), the first-order approximation
is u0(t) + 1

K
u1(t), the second-order approximation is

u0(t) + 1
K

u1(t) + 1
K2 u2(t), and so on. Note that we used

ε = 1/K here.

Exercise 2: Choose a large value for K (e.g., K = 100)
and use a computer to compare the solution u(t) given in (2)
with its leading-order and first-order approximations.

Case 2: Here we assume that the birthrate r is equal to a
small number ε, and also the carrying capacity is small, like
K = ε/k for some constant k > 0. Then the ratio r/K = k.
We use this scaling in Verhulst’s model (1) to get

d

dt
u = εu − ku2.

Again we study a perturbation expansion in ε:

u(t) =

N∑

j=0

εj uj(t), N ≥ 2,

and we compare coefficients of εj .

ε0 :
d

dt
u0 = −ku2

0,

ε1 :
d

dt
u1 = u0 − 2ku0u1,

. . .

We use the same initial conditions as in Case 1 above. The
equation for the leading-order term u0 is solved by

u0(t) =
M

1 + Mkt
.

Hence u0(t) decreases until it reaches 0 as t → ∞.

In these two cases, we see that one model—the Verhulst
model—can predict complimentary behavior. Depending on
the relative size of the parameters, we obtain, in leading
order, exponential growth in Case 1 and decay to 0 in Case 2.

Exercise 3: Try another scaling.
(a) What happens to leading order if r is small but K is large?
(b) Use this method to consider time scaling. For example,
let’s define a “slow” time scale τ = εt and then study U(τ ) =
u(τ/ε). By using the chain rule, you can derive a differential
equation for U(τ ). Then study a perturbation expansion.
(c) What happens with a “fast” time scale like θ = t/ε?
(d) Try other scaling then interpret your results.
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APPENDIX TO THE ARTICLE

HOW TO READ A MATHEMATICAL PAPER

by Thomas Hillen

Once I asked a student how she approached reading a mathematical
paper and she said: “I sit at my desk and stare at it for a very long
time. . . eventually I will understand. . . hopefully.”

Well, there are certainly many ways to read a mathematical paper.
The following method works pretty well for me:

1. Read the paper straight through. Don’t bother about the mathe-
matical details. Try to understand what it is about, what are the
results, what is the point?

2. Now check the details. Take some blank paper and a pencil and
follow all the calculations and modifications. This is the only way
to gain a deep understanding of the paper!

3. After checking all the details, read it again. What methods are
used? What is the basic idea behind the proof(s)?

4. If you wish, go further. Ask: can it be generalized? Can the
method or result be applied to some other problem? Can I shorten
the proof? Would a different method be more (or less) efficient?
Ultimately, you will start your own research. . .

You can use the above paper on Verhulst’s model to test this method.
You don’t need to attempt the exercises on first reading; that can wait
until step 2. The exercises are essential to understand the article. Have
fun!
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Mathematics in Today’s
Financial Markets

Alexander Melnikov†

Market—this idea is usually associated with institutions,
people, and actions involved in trading valuables. The valu-
ables, or assets, are called securities (soon we shall talk about
these in more detail). The place where we trade them is called
a financial market. Not only people, but banks, firms, in-
vestment and insurance companies, pension funds, and other
structures participate in financial markets.

Financial

Market

Banks,
Insurance

Companies:
CIBC, Allstate

Firms:
Microsoft, IBM,

Digital,
EPCOR

Investors:

Buying and selling, owning and loaning assets, receiving
dividends, and consuming capital are some of the activities
that take place at financial markets. In modern days, these
activities require serious quantitative calculations, which we
cannot conduct unless we “idealize” the market. For instance,
we must assume that all operations and transactions take
place immediately (this is called a liquid market) and that
they are free (the notion of a frictionless market). Securities
are the basis for a financial market. Securities come in many
shapes and kinds, but the main ones are stocks and bonds.

Stocks are securities that hold a share of the value of the
company (the words stocks and shares are used interchange-
ably). A company issues stock when it needs to raise capital
(money). People buy stock and thus own a “piece” of a com-
pany. This ownership gives stockholders the right to make
decisions in the way the company is governed and to receive
dividends based on the amount of stock a person has.

Bonds are other instruments that a government or a com-
pany issues when it needs to raise money. In effect, the buyers

† Alexander Melnikov is a professor in the Department of Math-
ematical and Statistical Sciences at the University of Alberta. His web
site is http://www.math.ualberta.ca/Melnikov A.html and his E-mail
address is melnikov@ualberta.ca.

of bonds lend their money to the institutions that issue bonds.
But such debt must be paid off, and this is done in two ways.
Unlike stocks, bonds have an expiry date, indicating when the
original borrowed amount (nominal value or principal value)
must be paid to the lender. In addition, throughout the term
of the bond, the lender receives coupon payments according
to the “yield” indicated on the bond. The bond yield is a very
significant quantitative indicator for financial calculations; it
is similar to a bank’s rate of interest—the “reward” for invest-
ing money in that bank. The bond without coupon payments
can viewed as the “money” in the bank account.

Let’s say that a bank persuades you to invest your funds
(and now, at time 0, you have the amount B0) in one of
its accounts for a certain period of time (one month, three
months, one year, etc.) by promising that at the end of this
period (time 1), you will receive a risk-free yield, that is, your
initial investment will increase by an amount denoted 4B1.
Note that 4B1 = B1 − B0, and also 4B1 = rB0, where r is
the interest coefficient, or the bank’s interest rate.

Depending on whether you decide to reinvest (monthly,
quarterly, yearly), you will receive only the initial investment,
or that plus the interest you have earned after n = 1, 2, 3, . . .
periods of time (see Figure 1).





Bn = Bn−1 + rB0 = B0(1 + rn)
or

Bn = Bn−1(1 + r) = B0(1 + r)n.
(1)

The relationship 4Bn

Bn−1
= (Bn−Bn−1)

Bn−1
= r characterizes the

yield of your investment.

1 2 3 4 5

B0

B1

B2

B3

B4

Figure 1
Simple interest—linear growth.

Usually, the rate of interest, or the “yield” on the invest-
ment, r · 100%, is stated for a year. We can divide this
time period into m smaller periods and calculate the yield
(monthly, quarterly, semi-annually, etc.) at the end of each
period, according to the stated annual rate. More frequent
compounding leads to an increase in the investor’s capital;
the amount B

(m)
n is given by:

B(m)
n = B0

(
1 +

r

m

)mn

. (2)

If we subdivide the year into more and more periods, so
that m approaches infinity, then B

(m)
n approaches B0e

n. In
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other words, the “limiting” amount of money in the bank
account is

lim
m→∞

B(m)
n = B0e

n. (3)

1 2 3 4 5

B0

B1

B2

B3

B4

Figure 2
Compound interest—non-linear (exponential) growth.

This implies that the relative yield of such an investment is
constant and equals the interest rate r.

The three methods of calculating interest discussed above
are called simple, compound, and continuous. Formulas (1),
(2) and (3) provide ways to calculate the amount in the in-
vestor’s bank account and clearly show the dependence of the
value of money on time.

On the other hand, we have the bank’s interest rate R, so
that if we invest the amount (1 − R)B1, at time 1, say, after
one year, we will receive the amount B1. This is equivalent
to the issuance of a bond with a nominal value B1 (to be
paid to the bond holder at the end of this year), but now the
bond sells for a lower price (decreased by the amount of the
lending rate R over one period, that is, m = 1). So today’s
price is determined by the formula (1−R)B1, which is equal
to the discounted price B1/(1 + r). Therefore, we can view
the bank account as a coupon-free bond in the sense of a
risk-free asset of the financial market. The lack of, or very
small, changes in interest rates characterize the stability of
financial and economic systems, for which the corresponding
bank account serves as the basic non-risky asset. Reality
shows that such suggestions present limits in the idealization
of mathematical models for financial markets.

Formulas (1), (2) and (3) show time evolution of the value of
money, presenting difficulties in the calculations of annuities.
These are periodic payments to be made in the future (such
as rent), denoted by f0, f1, f2 . . . , fn, whose values we need to
know today. According to the compound interest formula, we
calculate the value of the kth payment as fk/(1 + r)k. Thus,
the cost of all future payments today is given by the sum

f0 +
f1

(1 + r)1
+

f2

(1 + r)2
+ . . .

fn

(1 + r)n
.

These and similar arithmetic calculations determining rent
payments were the only functions of mathematics in finance
until the middle of the 20th century.

After the risk-free bank account, the second basic element
of a financial market is a stock, which is much more volatile
and thus is called a risky asset. Let Sn denote the price of the
stock at time n. We determine the yield of a stock during any
time period by ρn = (Sn − Sn−1)/Sn−1, where n = 1, 2, . . . .
Then stock prices satisfy this equation:

Sn = Sn−1 (1 + ρn) . (4)

Bank account balance (1), interest rate r and stock
price (4), for changing yield ρn form the mathematical model
of a financial market.

Many factors, often very difficult to determine, cause
changes in stock prices Sn. We refer to these factors as ran-
domness and call Sn (and thus ρn) random variables. Just
like the yield of a bank account, r = 4Bn/Bn−1, ρn is the
changing yield of a risky asset (stock in our example). Note
that since ρn changes every time period (at each n = 1, 2,
etc.), we can take all these different values of ρ and calcu-
late their mean µ, and individual yield values will lie below
and above the mean. As we shorten our time periods (for in-
stance, instead of observing changes in stock prices and thus
monthly or weekly yields, we record the changes hourly or
even every minute), we see that the up-and-down movements
of the stock’s yield become more and more chaotic. The pic-
ture below shows a possibility of such limiting behaviour of
yield-per-time, where discrete time periods, divided again and
again, become a continuous timeline.

Figure 3
Varying yield values and their time mean.

Formally, in the model with continuous time, at any mo-
ment in time t, the limiting yield equals the sum

µ + σW̃t, (5)

where µ is the mean yield, σ volatility, and W̃t represents
Gaussian “white noise,” a notion used in math and physics
to describe chaotic, irregular movements.

The pairs of formulas (1) and (4), and (3) and (5), re-
spectively constitute the binomial and diffusion models of
the financial market and frequently are called the Cox–Ross–
Rubinstein model and the Black–Scholes model.

Further, a participant in the securities market has to in-
vest his or her resources into assets available in this market,
choosing certain quantities of different assets. We refer to this
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process as forming one’s investment portfolio. Deciding how
much of which assets to include in the investment portfolio
is the essence of managing capital. Any changes to the con-
tents of the portfolio should limit or minimize the risk from
financial operations; this is called hedging the portfolio.

Among all investment strategies, we separate those that
bring profit without any initial expense. The possibility of
such strategies reveals the presence of arbitrage in a financial
market, which means that the market is unstable. The models
we discussed above are idealized, in that they do not allow
any arbitrage opportunities.

Developments in the financial market now give its partic-
ipants access to instruments evolved from basic stocks and
bonds. Forwards, futures, and options, called derivative se-
curities, attract investors with lower prices. Derivative se-
curities increase the liquidity of the market and function as
insurance against losses from unsuccessful investments.

For example, consider company A, which wishes to buy
stock of company B at the end of this year. The price of
B’s stock can either increase or decrease. So, to insure itself
against higher prices, company A signs a forward contract
with company B. According to the contract, A will buy B’s
stock at a predetermined and fixed price F at the end of the
year.

Now consider another case. Say company A already has B’s
stock, so A wisely wants to insure itself against the losses
it would incur if the price of B’s stock falls. Therefore, A
purchases a seller’s option from B. This agreement grants A
the right to sell B’s stock at a predetermined and fixed price
K at the end of the year. For the opportunity to do so, A
pays B a price for the contract—a premium.

A future contract is similar to a forward contract, but
rather than being written by the two participating sides di-
rectly, it is made through an exchange—a special organiza-
tion for managing the trade of various goods, financial in-
struments, services, etc. At an exchange, all commercial op-
erations are done by brokers, or intermediaries, who bring
together individuals and firms to make contracts.

The first exchange specializing in the trade of options,
CBOE (Chicago Board Option Exchange), opened on April
26, 1973, and by the end of the first day of work as many as
911 contracts were signed (one contract equals 100 shares).
Since then, the derivative securities markets have grown fast.
The huge capital of more and more participating firms and
the astonishing volume of contracts being signed increases
the volatility of derivative securities markets, thus increas-
ing the randomness factor in the determination of prices of
traded assets. Therefore, appropriate stochastic models have
become necessary for the valuation of assets. Today, proba-
bility theory and mathematical statistics are used to develop
such models for financial markets.

In the entire spectrum of securities, the most significant
one, mathematically, is an option—a derivative security that
gives the right to buy stock (this is a “call” option) at a
predetermined price K at the termination time T . (Note
that the right to sell stock is a “put” option). The exercise
of a call option demands payment of (ST −K)+, which is the
greater of (ST − K) and zero. Likewise, we have (K − ST )+

with a put option. The main problem, both practically and
theoretically, is this: what should be the current price PT

of the contract CT ? We only need to find CT or PT since

PT = CT − S0 + K
(1+r)T or PT = CT − S0 + K

erT .

In the case of the binomial model, we have two possibilities
for the stock price at the end of a period: either it will go up
with the probability p, or it will go down with the probability
1 − p. So the stock yield ρ will take on values b in p · 100%
of cases and a in (1 − p) · 100% of cases, with b > r > a >
−1. The exact answer for the price of the call option in the
binomial model is given by the famous formula of Cox–Ross–
Rubinstein (1976):

CT = S0

T∑

k=k0

k!

T !(T − k)!
p̃k(1 − p̃)T−k

−K(1 + r)−T

T∑

k=k0

k!

T !(T − k)!
(p∗)k(1 − p∗)T−k,

where k! is the product 1 · 2 · . . . · k, p∗ = (r−a)
(b−a) , p̃ = p∗ (1+b)

(1+r) ,

and k0 is the smallest integer j that makes the quantity

S0(1 + a)T
(

1+b
1+a

)j

greater than K.

But initially, the answer was found for the diffusion model
by Black, Scholes, and Merton in 1973:

CT = S0Φ

(
ln S0

K
+ T (r + σ2

2 )

σ
√

T

)

−KerT Φ

(
ln S0

K
+ T (r − σ2

2 )

σ
√

T

)
,

where

Φ(x) =
1√
2π

∫ x

−∞

e−
y2

2 dy

is the error function corresponding to the standard normal
distribution. The significance of this discovery was acknowl-
edged with the Nobel Prize in economics in 1997.

Let us remark that, historically, the first strictly mathemat-
ical work in calculating options, theTheory of Speculations,
was written by L. Bachelier in 1900. However, no one saw the
significance of these calculations at the time, and it was only
in the middle of the 1960s famous economist Samuelson “re-
discovered” Bachelier’s paper and introduced the more natu-
ral market model (5), known today as the formula of Black,
Scholes, and Merton.

As we have mentioned already, options and other deriva-
tive securities can function as insurance. Unlike traditional
insurance, where a client “sells” his risk to some insurance
company, insurance through options (hedging) allows putting
this risk in the financial market with the opportunity to watch
stock prices and adequately react to changes in the market
situation. In this way, finance and insurance are merged.

Therefore, in a financial market, the risk inherent in any
investment portfolio can be managed with the insurance
method described above. Insurance derivative securities (in-
surance forwards, futures, options), have become some of the
most popular assets to be traded in the past decade. And
the quantitative calculations of premiums (contract prices)
and risk are done using a mix of methods in financial and
actuarial mathematics.
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Am I Really Sick?

by Klaus Hoechsmann†

When Nelly came back from her year in Ladorada, she read
in The New York Times that tuberculosis was on the rise
again, especially in the part of the world she had just visited.
Her doctor explained to her that there was not much to worry
about, as only 0.01 percent of the inhabitants of that beautiful
and hospitable land were affected, but that it was wise to take
a simple test, which he had right there in his office. The next
day, he phoned her to say that, unfortunately, she had tested
positive. “Does that mean I am really sick?” she asked. “It
doesn’t look good,” said the doctor. “The test is 99.9 percent
sure.”

Nelly

Her brother Nick, who was
an engineer with a good feel
for numbers, asked her to
quote those figures again,
and then burst out laugh-
ing: only one in 10 000 Lado-
radans is infected, and that
dumb test makes one mistake
in 1000 trials, see?” Nelly
shook her head: “No, I only
see a guy who giggles at
numbers. Tell me what’s so
funny.” Nick gave her that
big brother look: “Accord-
ing to your doctor, the test
is right 999 times in 1000,
on average. So, if you test
10 000 people from over

there, you’ll get 10 false alarms and one real case—on aver-
age.” That evening, Nelly took a long walk in Central Park
mulling over Nick’s argument that her chances of being sick
were only one in 11. What a relief!

She had dinner with her friend Cornelia, who was study-
ing to be a nurse. “I can’t get over it,” said Cornelia. “In
class today we just began to study that new TB outbreak in
Ladorada as well as the Kinski Test, and here I am having
dinner with a real specimen—that’s so cool.” Nelly recalled
seeing the name Kinski on the box in Dr. Dixit’s office. “It’s
a new test,” Cornelia rambled on, “99.99 percent accurate.
But don’t worry, Nelly: even if you test positive, the chances
you are really infected are only 50 percent. That’s what our
instructor said—always 50 percent—and he does research in
a big lab.” Nelly was aching to run Nick’s logic through her
mind. “My doctor said its accuracy was only 99.9 percent,”
she ventured. “So what?” Cornelia shot back, “In either case,
we have near certainty. Remember, you always have a 50–50
chance to be a false positive.” Nelly remarked that Nick had
convinced her that the chance was 10 in 11, if Kinski was only
99.9 percent certain.

Though she had always had an eye on Nelly’s brother, Cor-
nelia now snapped that he was just an electrical engineer.
“What does he know about epidemiology?” She spoke that

† Klaus Hoechsmann is a professor emeritus at the Univer-
sity of British Columbia in Vancouver, B.C. You can find more
information about the author and other interesting articles at:
http://www.math.ubc.ca/∼hoek/Teaching/teaching.html. His E-mail ad-
dress is hoek@pims.math.ca.

word with the solemnity of a neophyte. To save the evening,
the two women opened another bottle of wine.

As she was waking up the next morning, Nelly was able to
reconstruct Nick’s argument for a test that was 99.99 percent
accurate. It would make one false diagnosis in 10 000 cases,
and in Ladorada there would be one real TB-carrier among
them—on average, as Nick would say. Hence you would likely
find two “positives” in that crowd. The reasoning behind
Cornelia’s “50–50” chance was therefore the equality of the
infection rate in the country and the failure rate of the test,
namely one in 10 000. Good! No, bad!

It meant that she had better do something: 50 percent was
too close for comfort. She got an appointment with an X-
ray lab, but only after the impending long weekend, most of
which she spent practicing her violin. After all, TB was not
AIDS, although the new strain was said to be particularly
resistant to treatment. But time and again, she was drawn
to search in the Internet for news on TB in Ladorada.

On Monday, still a holiday, she found a reputable Spanish
site describing the uneven spread of tuberculosis in Ladorada:
the capital was stricken 10 times harder than the country as
a whole. “One in 1000 for the likes of me,” she thought,
because she had spent almost all her time in Hermosa. She
reviewed Nick’s reasoning: if 10 000 inhabitants of that city
were tested, 10 true positives would turn up—on average—
because of the infection rate, and one false positive because
of the margin of error in Kinski. The tables had turned: her
chances of being healthy were down to one in 11. What a
bummer! Just then Cornelia phoned to say how sorry she
was to have been so snarky about Nick. Nelly told her about
the new odds.

Cornelia

“Don’t worry so much,”
Cornelia suggested. “The ex-
perts say the odds are 50–
50 for false positives; that’s
what you should go by, in-
stead of confusing yourself
with simplistic calculations.”
The conversation ended with
some chatter about Nick’s
vulnerability to predatory fe-
males. Quite a pair of health
professionals, Dr. Dixit and
Cornelia, thought Nelly. But
the word “simplistic” struck
a chord. What about the
false negatives—sick people
given a clean bill of health by

the test. Wouldn’t they diminish the 10 “true” positives?

Not by much, of course, but Nelly was suddenly more inter-
ested in the calculation than in her own health. She phoned
her friend Fatima, a graduate student in statistics, and was
glad to find her at home. After hearing what the problem was,
Fatima invited her over for tea. “It’s a classic,” she smiled,
“I have to explain it in my tutorials every single year, so I
made this slide to put on the overhead.” Nelly vaguely made
out some letters, lines, and coloured dots. “We’ll go over it
after tea,” said Fatima.

“See this yellow dot here? It represents the infected part
of the population, and the letter r stands for the odds of
being infected, 1/1000 in your case, but it could be 38/31570
or something crazy like that: it’s best to think of it as a
percentage. And the 1 − r is the opposite percentage, the
chance of being uninfected, hence it’s connected to the blue
dot labelled OK.” All that was straightforward, but didn’t
tell you anything, thought Nelly. “How come the yellow dot
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is labelled TB?” she asked. “Oh, just because it has only two
letters. The so-called infection could be any hidden condition
you want to ferret out with your test—like a secret yearning,”
Fatima whispered, “Say, for chocolate. But let’s get back to
the test.”

+

+

−

−

TB

OK

p

1− p

q

1− q

r

1− r

“The test marks you either as
positive—those are the red dots—
or negative, shown here in green.”
Now Nelly began to catch on.
“And there are two of each since
you could be a true or a false pos-
itive or negative. Could I try to
explain the rest of the diagram?”
Fatima was delighted to have such
an eager student. “If you are yel-
low, the chances of being correctly
identified are p; if you are blue,
they are q. Why are they not the
same?” Fatima pointed out that
the true yellows were usually easier
to identify than the true blues, so
p was usually bigger than q.“But
in the Kinski Test, they are the
same: 99.99 percent, aren’t they?”
said Nelly. “I looked it up after
you phoned me,” replied Fatima,
“p is indeed 99.99 percent but q
only 99.9 percent—so the test typ-
ically produces one positive out of
every 1000 blues.” Nelly threw
her arms around Fatima: “That
means I’m back to 50 percent, if
Nick’s reasoning is correct. Oh, Fa-
tima, please tell me that it is!” Fa-
tima thoroughly enjoyed being the
bringer of glad tidings, but said:
“Not quite. Let’s work it out all
the way.”

They tallied the positives: the true ones from yellow were
r× p and the false ones from blue were (1− r)× (1− q), for a
total of (1−r)(1−q)+rp. Thus, the chances of a false positive
were 1 in 1+rp/(1−p)(1−q) = 1+[r/(1−q)][p/(1−r)]. “Nick
neglected that last factor p/(1−r),” said Fatima, “But look at
it: 99.99/99.9 in this case. It isn’t much of a factor, and that is
typical: for any half-decent test it’s very close to one.” Nelly
had tears in her eyes and didn’t know whether they came
from the 50 percent or from understanding the calculation.
“Fatima, you are an angel,” she said, “But tomorrow I’ll still
have myself checked out.” Back on the street, the only thing
that irked her was that the news would strengthen Cornelia’s
blind faith.

In a speech to a gathering of mathematics professors from across
the United States, a conservative politician warned academics not
to misuse their position to force their often extremist political
views on young Americans. “It is my understanding,” the politi-
cian said, “that you frequently teach algebra classes in which your

students learn how to solve equations with the help of radicals. I
can’t say that I approve of that. . . ”

It is only two weeks into the term when, in a calculus class, a
student raises his hand and asks: “Will we ever need this stuff
in real life?” The professor gently smiles at him and says: “Of
course not—if your real life will consist of flipping hamburgers at
McDonald’s!”

Three statisticians go hunting. When they see a rabbit, the
first one shoots, missing it on the left. The second one shoots and
misses it on the right. The third one shouts: “We hit it!”

An American mathematician returns home from a conference in
Moscow on real and complex analysis. The immigration officer at
the airport glances at his landing card and says: “So, your trip to
Russia was business related. What’s the nature of your business?”

“I am a professor of mathematics.”
“What kind of mathematics are you doing?”
The professor ponders for a split second, trying to come up with

something that would sound specific enough without making the
immigration officer suspicious, and replies: “I am an analyst.”

The immigration officer nods with approval: “I think it’s great
that guys like you go to Russia to help those poor ex-commies to
get their stock market on its feet. . . ”

An investment firm is hiring mathematicians. After the first
round of interviews, three hopeful recent graduates—a pure math-
ematician, an applied mathematician, and a graduate in mathe-
matical finance—are asked what starting salary they are expecting.

The pure mathematician: “Would $30 000 be too much?”
The applied mathematician: “I think $60 000 would be OK.”
The mathematical finance person: “What about $300 000?”
The personnel officer is flabbergasted: “Do you know that we

have a graduate in pure mathematics who is willing to do the same
work for one-tenth of what you are demanding!?”

“Well, I thought $135 000 for me, $135 000 for you—and $30 000
for the pure mathematician who will do the work.”

c©Copyright 2003
Sidney Harris

Statistics Canada is hiring mathematicians. Three recent grad-
uates are invited for an interview: one has a degree in pure math-
ematics, one one in applied math, and the third a B.Sc. in statis-
tics. All three are asked the same question: “What is one-third
plus two-thirds?”

The pure mathematician: “It’s one.”
The applied mathematician takes out his pocket calculator,

punches in the numbers, and replies: “It’s 0.999999999.”
The statistician: “What do you want it to be?”
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Divisibility by Prime Numbers
Edwin D. Charles† and Jeremy B. Tatum∗

1. Introduction

Many of us may remember from our school days being
taught how to test whether a given large number is divisible
by 2, 3, 5, 6, 8, 9, 10, 11 or 12. Early in 2002, JBT (hereafter
“I”) wrote to Mr. Charles to ask if he knew of any method
to test whether a number is divisible by seven. Not very long
afterwards, Mr. Charles replied with a successful test that
he had devised. A little while later, he sought to expand
upon this; he had almost completed developing a method to
test whether a given large number is divisible by a specified
prime number when ill-health at the age of 91 obliged him to
give up the time needed to complete his work. Mr. Charles
died on December 23, 2002. His letters to me on the subject
were so clear and organized that they were almost ready for
publication as a formal article. With the help of a computer
(unavailable to Mr. Charles), I expanded his Table of Moduli
(which he had completed by hand up to p = 29 and n = 32)
to p = 97 and n = 100, made one or two minor modifica-
tions, and prepared an article for publication. However, the
method described, which constitutes the core of the paper, is
that of Mr. Charles, who should therefore be regarded as the
principal author.

2. Divisibility by 7, 13, 37, and 73

A rather simple test can be devised to test a large number
for divisibility by 7, 13, or 37, and to test for divisibility by
73 is only slightly longer. In this section, we will describe,
without explanation, the tests for divisibility by these four
numbers. In the next section, we will explain why these tests
work and show how to devise a test for divisibility by any
prime number. We will supply sufficient data to enable any
reader quickly to devise a test for divisibility by any of the
prime numbers up to p = 97.

The test number we use in this article will be

x = 6986648088495576619729344372307579911.

This number is not an arbitrarily-chosen number. We will
explain its significance a little later.

To test it for divisibility by 7, 13, or 37, we write the number
in groups of three digits:

6 986 648 088 495 576 619 729 344 372 307 579 911.
† Edwin D. Charles (1910-2002) was chief electrical engineering

draughtsman at the South Eastern Electricity Board in England. He
worked on this prime number project at the age of 91.

∗ Jeremy B. Tatum was an astronomy professor at the Univer-
sity of Victoria. During his research career, he discovered several new
asteroids. His E-mail address is universe@uvvm.uvic.ca.

Symbolically, let us write this as

a13 c12b12a12 c11b11a11 c10b10a10 c9 b9 a9 c8 b8 a8 c7 b7 a7

c6 b6 a6 c5 b5 a5 c4 b4 a4 c3 b3 a3 c2 b2 a2 c1 b1 a1.

Form the sums:

A = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + a12 + a13,

B = b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11 + b12,

C = c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 + c10 + c11 + c12,

A
′ = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 + a9 − a10 + a11 − a12 + a13,

B
′
= b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8 + b9 − b10 + b11 − b12,

C
′
= c1 − c2 + c3 − c4 + c5 − c6 + c7 − c8 + c9 − c10 + c11 − c12.

For the number x, these sums have the values

A = 80, B = 58, C = 60,

A′ = 0, B′ = −20, C ′ = 2.

We now assert:

• x is divisible by 7 iff r = A′+3B′+2C ′ is divisible by 7.

• x is divisible by 13 iff r = A′ − 3B′ − 4C ′ is divisible
by 13.

• x is divisible by 37 iff r = A + 10B − 11C is divisible
by 37.

For our number x, these three expressions have the values
-56, 52, and 0 respectively. Since these numbers are, respec-
tively, divisible by 7, 13, and 37, the number x is divisible by
7, 13, and 37. In case one is not sure whether 52 is divisible
by 13, one can apply the test again. Thus, for the number 52,
A′ − 3B′ − 4C ′ is equal to −13, and therefore 52 and x are
both divisible by 13.

To test for divisibility by 73, one writes the number to be
tested in groups of four:

6 9866 4808 8495 5766 1972 9344 3723 0757 9911

In symbols, . . . d2c2b2a2 d1c1b1a1.

We need the sums A′, B′, C ′, and D′ = d1 − d3 + d3 − . . .
For the number x (as written now in groups of four digits),

we find that

A′ = −14, B′ = 10, C ′ = 12, D′ = 12.

We now assert:

• x is divisible by 73 iff r = A′ + 10B′ + 27C ′ − 22D′ is
divisible by 73.

In this case, we find that r = −14+100+324− 264 = 146.
If one is not sure whether 146 is divisible by 73, one can check
this too: for 146, r = 6 + 40 + 27 = 73. Thus 146 and x are
both divisible by 73.

3. Divisibility by Any Prime Number

The rationale for the tests we have described is as follows.
Let x be an integer of n + 1 digits written in the form

x = anan−1an−2 . . . a2a1a0,
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and let p be a prime number. Let

r = (100 mod p)a0 + (101 mod p)a1 + (102 mod p)a2 + . . .

. . . (10n−1 mod p)an−1 + (10n mod p)an.

Then, if r is divisible by p, then, and only then, x is divisible
by p. To see this, think how one would divide 3256607, say,
by 7. One would mutter to oneself: “7 into 32 goes 4 and
4 over; 7 into 45 goes 6 and 3 over; 7 into 36 goes 5 and 1
over.”

For this test to be useful, we need a table of 10n mod p,
and we provide a table for prime numbers from 7 to 97. It
is easy to extend this table to as large a value of n as you
wish, as will shortly become evident, and it will be found, for
example, that 10100 mod 97 = 9. This means that if you were
to divide the number 10 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 by 97, there would
be a remainder of 9. To extend the table, we notice that,
as we run our eye down each column, the pattern of entries
repeats itself, either with a change in sign or with no change
in sign after each period. Indeed, for a given prime number,
the period is never more than p − 1, and in many cases it is
a fraction of this.

p 7 11 13 17 19 23 29 31 37 41 43 47

n

0 1 1 1 1 1 1 1 1 1 1 1 1
1 3 -1 -3 -7 -9 10 10 10 10 10 10 10

2 2 1 -4 -2 5 8 13 7 -11 18 14 6
3 -1 -1 -1 -3 -7 11 14 8 1 16 11 13

4 -3 1 3 4 6 -5 -5 -13 10 -4 -19 -11
5 -2 -1 4 6 3 -4 8 -6 -11 1 -18 -16

6 1 1 1 -8 -8 6 -7 2 1 10 -8 -19

7 3 -1 -3 5 -4 -9 -12 -11 10 18 6 -2
8 2 1 -4 -1 -2 2 -4 14 -11 16 17 -20

9 -1 -1 -1 7 -1 -3 -11 -15 1 -4 -2 -12
10 -3 1 3 2 9 -7 6 5 10 1 -20 21

11 -2 -1 4 3 -5 -1 2 -12 -11 10 15 22
12 1 1 1 -4 7 -10 -9 4 1 18 21 -15

13 3 -1 -3 -6 -6 -8 -3 9 10 16 -5 -9
14 2 1 -4 8 -3 -11 -1 -3 -11 -4 -7 4

15 -1 -1 -1 -5 8 5 -10 1 1 1 16 -7

16 -3 1 3 1 4 4 -13 10 10 10 -12 -23
17 -2 -1 4 -7 2 -6 -14 7 -11 18 9 5

18 1 1 1 -2 1 9 5 8 1 16 4 3
19 3 -1 -3 -3 -9 -2 -8 -13 10 -4 -3 -17

20 2 1 -4 4 5 3 7 -6 -11 1 13 18
21 -1 -1 -1 6 -7 7 12 2 1 10 1 -8

22 -3 1 3 -8 6 1 4 -11 10 18 10 14
23 -2 -1 4 5 3 10 11 14 -11 16 14 -1

24 1 1 1 -1 -8 8 -6 -15 1 -4 11 -10
25 3 -1 -3 7 -4 11 -2 5 10 1 -19 -6

I have indicated in blue the shortest repetition period for
each number without regard to changes of sign. The shorter
the period, the easier the divisibility test. In order to test our
number x for divisibility by 47, for example, we would have

p 53 59 61 67 71 73 79 83 89 97
n

0 1 1 1 1 1 1 1 1 1 1
1 10 10 10 10 10 10 10 10 10 10

2 -6 -18 -22 33 29 27 21 17 11 3
3 -7 -3 24 -5 6 -22 -27 4 21 30

4 -17 29 -4 17 -11 -1 -33 40 32 9

5 -11 -5 21 -31 32 -10 -14 -15 -36 -7
6 -4 9 27 25 -35 -27 18 16 -4 27

7 13 -28 26 -18 5 22 22 -6 -40 -21
8 24 15 16 21 -21 1 -17 23 -44 -16

9 -25 -27 -23 9 3 10 -12 -19 5 34
10 15 25 14 23 30 27 38 -24 -39 -48

11 -9 14 18 29 16 -22 -15 9 -34 5
12 16 22 -3 22 18 -1 8 7 16 -47

13 1 -16 -30 19 -33 -10 1 -13 -18 15

14 10 17 5 -11 25 -27 10 36 -2 -44
15 -6 -7 -11 24 -34 22 21 28 -20 45

16 -7 -11 12 -28 15 1 -27 31 -22 -35
17 -17 8 -2 -12 8 10 -33 -22 -42 38

18 -11 21 -20 14 9 27 -14 29 25 -8
19 -4 -26 -17 6 19 -22 18 41 -17 17

20 13 -24 13 -7 -23 -1 22 -5 8 -24
21 24 -4 8 -3 -17 -10 -17 33 -9 -46

22 -25 19 19 -30 -28 -27 -12 -2 -1 25

23 15 13 7 -32 4 22 38 -20 -10 -41
24 -9 12 9 15 -31 1 -15 -34 -11 -22

25 16 2 29 16 -26 10 8 -8 -21 -26
26 1 20 -15 26 24 27 1 3 -32 31

27 10 23 -28 -8 27 -22 10 30 36 19
28 -6 -6 25 -13 -14 -1 21 -32 4 -4

29 -7 -1 6 4 2 -10 -27 12 40 -40
30 -17 -10 -1 -27 20 -27 -33 37 44 -12

31 -11 18 -10 -2 -13 22 -14 38 -5 -23

32 -4 3 22 -20 12 1 18 -35 39 -36
33 13 -29 -24 1 -22 10 22 -18 34 28

34 24 5 4 10 -7 27 -17 -14 -16 -11
35 -25 -9 -21 33 1 -22 -12 26 18 -13

36 15 28 -27 -5 10 -1 38 11 2 -33
37 -9 -15 -26 17 29 -10 -15 27 20 -39

38 16 27 -16 -31 6 -27 8 21 22 -2
39 1 -25 23 25 -11 22 1 -39 42 -20

40 10 -14 -14 -18 32 1 10 25 -25 -6

41 -6 -22 -18 21 -35 10 21 1 17 37
42 -7 16 3 9 5 27 -27 10 -8 -18

43 -17 -17 30 23 -21 -22 -33 17 9 14
44 -11 7 -5 29 3 -1 -14 4 1 43

45 -4 11 11 22 30 -10 18 40 10 42
46 13 -8 -12 19 16 -27 22 -15 11 32

47 24 -21 2 -11 18 22 -17 16 21 29
48 -25 26 20 24 -33 1 -12 -6 32 -1

49 15 24 17 -28 25 10 38 23 -36 -10

50 -9 4 -13 -12 -34 27 -15 -19 -4 -3
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to arrange the number in groups of 23 digits, and form the
alternating sums A′, B′, C ′,. . .U ′, V ′, W ′. We use the alter-
nating (primed) sums because consecutive periods alternate
in sign. We then calculate

r = A′ − 10B′ + 6C ′ + 13D′ − 11E′ − · · · + 14W ′

and deduce that x is divisible by 47 iff r is divisible by 47.

One may ask whether applying the test for divisibility is in
practice really faster than actually carrying out the division,
particularly since applying the test doesn’t tell you what the
quotient is. This depends on a number of things, the most
important of which is the length of the repetition period. The
repetition period for p = 3 is nice and short—just one. On
the other hand, most of us remember our seven-times table,
so dividing by 7 is probably the better bet. The repetition
period for p = 41 is a bit longer; it is five, so the test is a
bit more complicated. But unless you have memorized your
41-times table, the test is probably faster than direct division
by 41. What if p = 97? The test is a very long one, and
it would take some time to work out what the test actually
is. Yet can you divide 10100 by 97 any faster? We suspect
that the only way to find out is to try both methods and time
oneself.

One last small detail. The 37-digit number that we chose
as a numerical example to illustrate the method is the prod-
uct of all the prime numbers from 7 to 97 inclusive, and it
was worked out using a simple hand calculator carrying ten
digits—but how that was done we shall keep as a little secret.

A physics professor is examining three students orally. One
of them is in engineering, one is in physics, and the third is in
mathematics. The question is the same for each of them: “Which
is faster: light or sound?”

The engineering student is first. His answer: “Sound, of course!”
The professor grinds his teeth, but manages to stay calm: “And

what makes you think so?”
“Well, whenever I turn on my TV, the screen is still dark when

the sound comes. . . ”
“GET OUT!”
The physics student is next, and he answers: “Light, of course!”
The professor is relieved, but nevertheless asks: “And what

makes you believe this?”
“That’s easy: whenever I turn on my car’s sound system, a light

goes on before the sound comes. . . ”
“GET OUT!!!”
Before it’s the math student’s turn, the professor ponders.

Maybe his question is too difficult and too abstract. So he gets
himself a horn and a flashlight, and when the math student enters
his office, he simultaneously blows into the horn and flashes the
light at the student.

“Which did you notice first?” he asks. “Light or sound?”
“The light.”
“And what is your explanation for this?”
“That’s because my eyes are further in front in the head than

my ears. . . ”

MATH & MUSIC

This song, adapted from Don McLean’s “American Pie” by
Lawrence (Larry) M. Lesser from Armstrong Atlantic State
University, gives historical highlights of the number π. Visit
http://www.real.armstrong.edu/video/excerpt1.html to down-
load a video of Larry performing this and some other math
songs. We also recommend Larry’s “math and music” page at:
http://www.math.armstrong.edu/faculty/lesser/Mathemusician.html

“AMERICAN π” by Lawrence Lesser
(reprinted with permission)

CHORUS: Find, find the value of pi, starts 3 point 1 4 1 5 9.
Good ol’ boys gave it a try, but the decimal never dies,
The decimal never dies. . . . . . . . .

In the Hebrew Bible we do see
the circle ratio appears as three,
And the Rhind Papyrus does report four-thirds to the fourth,
& 22 sevenths Archimedes found
with polygons was a good upper bound.
The Chinese got it really keen:
three-five-five over one thirteen!
More joined the action
with arctan series and continued fractions.
In the seventeen-hundreds, my oh my,
the English coined the symbol π,
Then Lambert showed it was a lie
to look for rational π.
He started singing . . . . . . . . . . (Repeat Chorus)

Late eighteen-hundreds, Lindemann shared
why a circle can’t be squared
But there’s no tellin’ some people—
can’t pop their bubble with Buffon’s needle,
Like the country doctor who sought renown
from a new “truth” he thought he found.
The Indiana Senate floor
read his bill that made π four.
That bill got through the House
with a vote unanimous!
But in the end the statesmen sighed,
“It’s not for us to decide,”
So the bill was left to die
Like the quest for rational π.
They started singing . . . . . . . . . (Repeat Chorus)

That doctor’s π in the sky dreams
may not look so extreme
If you take a look back: math’maticians long thought that
Deductive systems could be complete
and there was one true geometry.
Now in these computer times,
we test the best machines to find
π to a trillion places
that so far lack pattern’s traces.
It’s great when we can truly see
math as human history—
That adds curiosity. . . . . . easy as π!
Let’s all try singing. . . . . . (Repeat Chorus)
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Group Folding and
Groups Unfolded

A Gathering for Gardner IV,
Atlanta, 2000

by Andy Liu†

We present an activity that is very suitable in a group set-
ting. We call it Scientific Origami, as opposed to the usual
Artistic Origami where one folds a piece of paper by follow-
ing very complicated instructions, culminating in a beautiful
bird, flower, or some other design.

We start with a square piece of paper that is blank on one
side and coloured on the other. The usual origami paper is
ideal for this purpose. In our illustrations, the coloured side
will be green.

The instructions are very simple. We first fold the paper in
half in one direction, and then in half again. Unfold the piece
of paper and repeat the above steps in the other direction.
We have creased the piece of paper in such a way that it is
divided into 16 cells in a 4 × 4 configuration, as shown in
Figure 1.

Figure 1

Our objective now is to fold this creased piece of paper
to eliminate one row and one column. In the resulting 3 × 3
configuration, each of the nine cells is either completely blank
or completely coloured.

It does not sound very complicated, does it? Figure 2 shows
one way of doing it. After the two folds, we have a 3 × 3
configuration in which all nine cells are blank.

Fold here Fold here again

⇒ ⇒

Figure 2

A design with nine green cells is equivalent to the one with
no green cells. We can create it simply by turning over the

† Andy Liu is a professor in the Department of Mathematical and
Statistical Sciences at the University of Alberta. His E-mail address is
aliu@math.ualberta.ca.

piece of paper before we begin. From now on, we will regard
such a pair of designs as a single one, and will use at most
four green cells to represent it.

Looking at the back of the folded packet, we find a different
design, with the nine squares divided 5:4, that is, with five
coloured and four blank. Had we made the second fold in Fig-
ure 2 towards the front instead, we would have obtained two
other designs, where the divisions are 7:2 and 6:3 respectively.

Exercise 1.

Fold a design where the squares are divided 8:1.

Figure 3

Exercise 2.

Fold as many as possible of the 50 designs in Figure 3. You
should be warned that only about one-quarter of them can
be achieved.
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The designs in Figure 3 plus the one in Figure 2 represent
all there are. It may take a little while to check that they
are all different; that is, they cannot be transformed into one
another by rotation or reflection. The more difficult question
is how we can tell that there are no more.

Let us first solve a related and simpler problem, in which
the square is only divided into four cells in a 2 × 2 configu-
ration. Here, we have 24 = 16 distinct designs. Since it does
not have a central cell, we will treat two designs as distinct
even if they may be obtained from each other by changing
blank cells to coloured ones and vice versa.

Two designs, with all four cells alike, stand alone and be-
come patterns in their own right. Two others, with two diag-
onally opposite cells blank and the other two coloured, com-
bine into a single pattern. Four other designs, consisting of
two adjacent blank cells and two adjacent coloured ones, also
form a pattern. Another four, consisting of one blank cell and
three coloured cells, form a fifth pattern, while the last four
designs form a sixth. Thus there are six distinct patterns.

However, this is counting the hard way. While we can be
reasonably satisfied that we have not missed out anything
here, such confidence would be misplaced in the original prob-
lem of counting 3 × 3 patterns. We seek an alternative ap-
proach in which the task does not become significantly more
difficult when the size of the problem increases.

Before getting into the more technical part of this article,
we must acknowledge the inventors of this activity. Originally,
Serhiy Grabarchuk of Ukraine asked for the folding of the
26th design in Figure 3 (three in a diagonal) from a 5 × 5
piece of paper. Later, three Japanese puzzlists by the names
of Hiroshi, Kitajima, and Saseki, extended the puzzle and
asked for the folding of all 51 designs from a piece of 5 × 5
paper.

Exercise 3.

Starting with a piece of 5 × 5 paper, fold all 51 designs in
Figures 2 and 3.

Let us take a closer look at the transformations that bring
a square back to itself. There are eight such symmetries, and
they are listed in the chart below.

I = 0◦ rotation or
identity

R = 180◦ rotation

A = 90◦ rotation
counterclockwise

C = 90◦ rotation
clockwise

H = reflection about
horizontal axis

V = reflection about
vertical axis

U = reflection about
up diagonal

D = reflection about
down diagonal

We now introduce a simple but very useful concept. A de-
sign is said to be invariant under a symmetry if the same
design results after performing the transformation. Clearly,
every design is invariant under I, but some designs are invari-
ant under other transformations too. As an example, Figure 4
shows the action of the eight symmetries on four designs that

combine to form a single pattern.

Figure 4

The invariant entries are marked with a bar on top of the
square. There are eight such entries in this pattern. It is
not difficult to verify that in each of the other five patterns,
the total number of invariant designs under the symmetries
is also eight. We claim that this is always the case, so that
we can calculate the total number of patterns by dividing the
total number of invariant entries by eight.

We now have to count invariant entries. It is just as difficult
as counting patterns if we do it design by design. However,
it turns out to be a much simpler task if we do it symmetry
by symmetry.

Clearly, all 24 = 16 designs are invariant under I. If a
design is to be invariant under R, opposite cells must have
the same colour. Since there are two pairs of opposite cells,
the number of designs invariant under R is 22 = 4. If a design
is to be invariant under C, all four cells must have the same
colour, so that the number of such designs is 21 = 2. Similarly,
the number of designs invariant under A is also 21 = 2.

If a design is to be invariant under H, cells adjacent verti-
cally must have the same colour. Since there are two pairs of
such cells, the number of designs invariant under H is 22 = 4.
Similarly, so is the number of designs invariant under V . If
a design is to be invariant under U , the two cells not on the
up diagonal must have the same colour. Thus, we are free to
choose the colours of three cells, so that the number of de-
signs invariant under U is 23 = 8. Similarly, so is the number
of designs invariant under D.

It follows that the total number of invariant entries is
16+4+2+2+4+4+8+8=48. Dividing by 8, we obtain 6, con-
firming our earlier direct count. In the original problem, the
number of invariant entries can be counted in a similar way
to yield 29 + 25 + 23 + 23 + 26 + 26 + 26 + 26 = 816, so that
the number of distinct patterns is 816÷8 = 102. Dividing by
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2 to account for the fact that we do not distinguish colour-
contrast, we indeed have 51 designs.

We still have to justify our claim that the number of in-
variant entries in each pattern is always eight. To do so, we
have to introduce another concept, that of a group.

When we perform one symmetry of the square after an-
other, the net result may be obtained by performing a single
symmetry. For example, Figure 5 shows that if we first per-
form H and then A, the net result is U . We write HA = U .

⇒ ⇒ ⇒ ⇒
Figure 5

Thus, we may define an operation of “followed by” among
the symmetries of the square. The set S of symmetries of the
square under this operation has the following properties:

1. Closure: Whenever X and Y are in S, so is XY .

2. Associativity: For any X, Y and Z in S, X(Y Z) =
(XY )Z.

3. Identity: There exists an I in S such that XI = X =
IX for any X in S.

4. Inverse: For any X in S, there exists a Y in S such that
XY = I = Y X.

Such a structure is called a group. In our example, the closure
and identity properties are obvious. I indeed serves as the
identity. C and A are inverse of each other while each of the
other six is the inverse of itself. The associativity property
is also clear since both (XY )Z and X(Y Z) represent the net
result of performing X, Y and Z in succession. The complete
operation table is shown below.

First Second Symmetry

Symmetry I R A C H V U D

I I R A C H V U D

R R I C A V H D U

A A C R I D U H V

C C A I R U D V H

H H V U D I R A C

V V H D U R I C A

U U D V H C A I R

D D U H V A C R I

Note that the cancellation law holds, in that if XY = XZ,
then Y = Z. Let W be the inverse of X. Then W (XY ) =
W (XZ). By the associativity property, we have (WX)Y =
(WX)Z. By the inverse property, we have IY = IZ. Finally,
by the identity property, we have Y = Z as claimed. This
means that in each row of the table above, all eight entries
are distinct. The same also holds for each column.

Two designs belong to the same pattern if and only if there
is a symmetry that takes one to the other. From any one
design, each of the eight symmetries takes it either back to
itself or to one of the other designs in the same pattern. We

illustrate this with the same pattern considered earlier, start-
ing from the design at the bottom left corner of Figure 6.

H C

V
A

D
R

I

U Figure 6

The starting design is invariant under two symmetries,
namely, I and U . We claim that the number of symmetries
under which another design is invariant is equal to the num-
ber of symmetries going to it from the starting design. Since
each symmetry takes the starting design either back to itself
or to another design, the total number of invariants within
the pattern must be eight.

Consider, for example, the design at the bottom right cor-
ner of Figure 6. One of the symmetries that takes it back
to the starting design is C. Then the symmetry CX takes
this design to the same destination as the symmetry X takes
the starting design. Moreover, the symmetries CI, CR, CA,
CC, CH, CV , CU , and CD are distinct, being C, A, I, R,
U , D, V , and H respectively. It follows that this design is
invariant under CA = I and CV = D, and under only these
two symmetries.

This justifies our claim. The fact that the invariants are
divided two apiece is immaterial, though it would have been
most surprising were it not the case.

To conclude this article, we return to the easier problem of
counting 2 × 2 patterns, not distinguishing colour contrast.
All we have to do is to define eight additional symmetries,
namely, I ′, R′, A′, C ′, H ′, V ′, D′, and U ′, where X ′ means
X followed by colour-reversal. It is easy to verify that this
expanded set of symmetries form a 16-element group.

The numbers of invariants for the original eight symmetries
remain unchanged. Those for the new symmetries are 0 for
I ′, D′ and U ′, 2 for A′, and C ′, and 4 for R′, H ′, and V ′.
Hence the total number of distinct patterns is given by (48 +
16) ÷ 16 = 4, as we have observed before.

Grade 6 students at Lynnwood Elementary School in
Edmonton work on Scientific Origami.

Comment: This was the text of a talk to a group of Latvian youngsters
on the occasion of an awards presentation for their National Mathemat-
ical Olympiad in Riga on May 30, 1999. The ceremony was presided
over by the chief organizer, Agnis Andjans. He is a recent winner
of the Paul Erdős National Award for the promotion of mathemat-
ics through competitions in his country. The award was bestowed by
the World Federation of National Mathematics Competitions,
founded by the late Peter O’Halloran of Australia.
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Problem 1. For how many positive integers x does there
exist a positive integer y with xy

x+y
= 100?

Problem 2. Find the number of non-negative integers n such
that 2003 + n is a multiple of n + 1.

Problem 3. A cube of unit edge is rotated 30 degrees about
one of its diagonals. What is the volume of the solid that is
the intersection of the initial cube and the rotated one?

Send your solutions to π in the Sky : Math Challenges.

Solutions to the Problems Published in the Septem-
ber, 2002 Issue of π in the Sky:

Problem 1. Assume that A 6= ∅, where ∅ stands for the empty set.
Then A contains at least one positive number. Indeed, if x ∈ A and
x < 0 then x2 − 5|x| + 9 ∈ A and

x2 − 5|x| + 9 = |x|2 − 5|x| + 9 =
(
|x| −

5

2

)2

+
11

4
> 0.

Since f(3) = 3, then 3 could be an element of A. Also f(x) = 3 ⇐⇒ x ∈
{±2,±3}. The only positive numbers in A could be 2 and 3. Indeed,
assume by contradiction that there is a number x ∈ A, x 6= 0, x /∈ {2, 3}.
Since x 6= 3, then f(x) > x. Now, since f(x) /∈ {2, 3}, we find that
f
(
f(x)

)
> f(x) and thus f

(
f(x)

)
> f(x) > x. Repeating this argument,

we obtain an infinite sequence x, f(x), f
(
f(x)

)
, . . . of distinct numbers

that belong to A, thus A cannot be finite—a contradiction. We also
mention that for any x, f(x) 6= 2. Hence if x ∈ A, f(x) must be 3;
therefore 3 must be an element of A. Let x ∈ A, x ≤ 0. Since f(x) ∈ A
and f(x) > 0, we see that f(x) = 3; that is, x ∈ {−2,−3}. Therefore,
we can take

A = ∅, A = {3}, A = {−3, 3}, A = {2, 3},
A = {−2, 3}, A = {−2, 2, 3}, A = {−3, 2, 3},
A = {−3,−2, 3}, A = {−3,−2, 2, 3}.

Problem 2. We can easily see that (m, n) = (1, 1), (m, n) = (2, 3) are
solutions to the equation. Let us prove that other solutions do not exist.
Suppose that there is another solution (m, n) not equal to those above.
The equation can be written as follows:

3m − 1 = 2n ⇐⇒ (3 − 1)(3m−1 + 3m−2 + . . . 3 + 1) = 2n

⇐⇒ 3m−1 + 3m−2 + · · · + 3 + 1 = 2n−1.

Since n > 1, the right-hand side is even. Hence, the left-hand side must
be even as well, so that m must be even, say, m = 2m′. Since m 6= 2, we
must have m ≥ 4 and hence n > 3. Now we can write our equation as

9m′

− 1 = 2n or (9 − 1)(9m′−1 + 9m′−2 + · · · + 9 + 1) = 2n,

or 9m′−1 + · · · 9+1 = 2n−3. But n > 3, so the right-hand side, and also
the left-hand side, of the above equality must be even. Thus m′ = 2m′′

and therefore 81m′′

− 1 = 2n. However, this equality can not be true
since the left side is divisible by 5, while the right side is not. Therefore,
our assumption that we could have another solution has dropped.

Problem 3. We may assume that (m, n) = 1. Use induction on m. For
m = 1, the statement is clearly true. Let us assume that it is true for all
fractions k

n
with 0 < k

n
< 1 and k < m. We prove that the statement is

true for k = m, where 0 < m
n

< 1. By the division algorithm, we have
n = mq+r, 0 < r < m; that is, m(q+1) = n+(m−r) or m(q+1) = n+p,

for 0 < p < m. This equality can be written as m
n

= 1

q+1

(
1 + p

n

)
.

Using the induction hypothesis, p

n
= 1

b1
+ · · · + 1

bs−1
, and br−1 divides

br , r = 2, s − 1, hence

m

n
=

1

q + 1
+

1

(q + 1)b1
+ · · · +

1

(q + 1)bs−1

,

and the statement holds for m = k if a1 = q + 1, a2 = (q + 1)b1, · · · ,
as = (q + 1)bs−1.

Note: The above solution provides an algorithm for writing a fraction
as a sum of fractions with numerator 1. For example, if 7

11
, then 2 · 7 =

11 + 3 =⇒ 7

11
= 1

2

(
1 + 3

11

)
, 3 · 4 = 11 + 1 =⇒ 3

11
= 1

4

(
1 + 1

11

)
, hence

7

11
= 1

2

(
1 + 1

4

(
1 + 1

11

))
= 1

2
+ 1

2·4
+ 1

2·4·11
.

Problem 4. Rotate the square about its center O, counterclockwise 90◦.
Then A moves to D, D to C, C to B, B to A, and P to some point P ′.

D C

BA

P

P ′

�

�

�

The lines AP, DP, CP , and BP move
in four lines through D, C, B, and A
respectively. These lines are perpen-
dicular on AP, DP, CP , and BP re-
spectively, and all intersect at P ′. The
perpendiculars from the problem are
three of these lines; hence, they inter-
cept at P ′.

Problem 5. Making a new cut in a polygonal piece of cardboard, we
increase the number of pieces by one. If we make N cuts, we get N + 1
pieces. If we have a set of polygonal pieces of cardboard and cut one
piece, the number of vertices of the new set will increase with at most
four vertices. Since initially we have four vertices, after N cuts we cannot
have more than 4N + 4 vertices in all pieces. Let us assume that after
N cuts we have got P polygons with S sides. Since we have a total of
N + 1 pieces, N + 1 − P polygons do not have S sides. On the other
hand, each piece (of these N + 1 polygons) has at least three vertices,
hence the number of vertices for all pieces is at least P ·S+(N −P +1)3.
Therefore, PS + (N − P + 1)3 ≤ 4N + 4. That is, PS − 3P − 1 ≤ N .
This inequality says that, in order to obtain P polygons with S sides, we
have to make at least PS − 3P − 1 cuts. Let us prove that this number
is enough to achieve our goal.

1 2 P − 1

With P − 1 cuts, a rectangle is
tranformed into P rectangles.

Each rectangle can be trans-
formed into a polygon with S
sides by making S − 4 cuts.

Thus, by making (S−4) ·P +P −1 = PS−3P −1 cuts, we can obtain P
polygons with S sides. In our problem, we have P = 2002 and S = 2003.
Hence the minimum number of cuts is 2002 · 2003− 6006− 1 = 4003999.

Problem 6. For k > 0 and A, B real numbers we have the inequality

AB ≤ 1

4k
(A + kB)2. Taking A =

n∑
i=1

pif(xi), B =
n∑

i=1

pig(xi), we get

(
n∑

i=1

pif(xi)

)(
n∑

i=1

pig(xi)

)
≤

1

4k

(
n∑

i=1

pif(xi) + k
n∑

i=1

pig(xi)

)2

=
1

4k

(
n∑

i=1

pi [f(xi) + kg(xi)]

)2

. (1)

The function h(x) = f(x) + kg(x) is convex on [a, b], hence h(x) ≤
max{h(a), h(b)}, for every x ∈ [a, b] (see π in the Sky , September 2002,
Math. Strategies). Hence f(xi) + kg(xi) ≤ max{f(a) + kg(a), f(b) +
kg(b)} = M and the required inequality follows from (1).

Note: If we take f(x) = x and g(x) = 1

x
, 0 ≤ a ≤ xi ≤ b, pi ≥ 0, for

i = 1, . . . , n we get
(

n∑

i=1

pixi

)(
n∑

i=1

pi

xi

)
≤

(a + b)2

4ab

(
n∑

i=1

pi

)2

,

which is Kantorovich’s Inequality (π in the Sky , September 2002, Math.
Strategies).
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